# **Development Impact Statement**

FOR

# **Singletary Arms**

Millbury, Massachusetts



DATE PREPARED August 24, 2020



PREPARED BY Todd Chandler, PE 231 Rockpoint Drive Walnut Shade, Missouri 65771

# **Table of Contents**

- 1) Traffic Impact Assessment
- 2) Environmental Impact Assessment
- 3) System Capacity
- 4) Mitigation Measures
- 5) Fiscal Impact
- 6) Historic Impact
- 7) Development Goals

# Appendices

- A) Traffic Study
- B) Construction Period Pollution Prevention Plan
- C) Permanent Pollution Prevention Plan
- D) Potable Water Engineering Report
- E) Sanitary Sewer Engineering Report
- F) Stormwater Report

#### **Development Impact Statement**

The Traffic Assessment Report prepared by Nitsch Engineering concluded that the increase of traffic caused by the development on the roadway network would be minimal, suggesting low impact on traffic operations and safety at the intersection. Therefore, they did not recommend any changes to the intersection geometry, traffic control, or roadway network.

In addition, they also stated that the total number of parking spaces provided is 56 spaces less than the number of spaces required by the TRC. Therefore, a variance will be required from the Town. However, the parking spaces provided exceeds the ITE parking requirements showing that it is anticipated that the amount parking provided is sufficient to meet the demand.

#### **Environmental Impact Assessment:**

The site, an operating +/- 50,000 square feet manufacturing facility, will be redeveloped into a mixed-use development consisting of a converted warehouse and two proposed three-story apartment buildings. The manufacturing facility, located at the southwest corner of West Main Street and Burbank Avenue in Millbury, sits on 1.5 acres of a 12.5-acre parcel. The undeveloped parcel consists of 4.5 acres of wooded upland and approximately 6.5-acres of pond, stream, and wetland.

The proposed apartment buildings will be situated on a 4.5-acre wooded upland. The balance of the parcel will remain undisturbed. Given the existing ground drops approximately fifty feet in elevation across the width of the 4.5-acre site, it has been graded in a tiered fashion to accommodate stormwater management, vehicle access, pedestrian access, along with aesthetics. To reduce disturbed area, each building will be constructed over a parking lot with the balance of the disturbed area being surface parking, and landscaping. The disturbed area should be seventy percent stabilized once the parking area base rock has been installed.

Both construction period and permanent best management practices will be used to control sediment. Examples of some of these measures include silt fence, silt sock, rip-rap, inlet protection, seed and mulch, and sod. The best management practices will be properly maintained from commencement of site construction through to site stabilization with permanent measures. See Appendices B and C for Construction Period and Permanent measures.

The impervious cover of the proposed re-development is 25%, with lot coverage well under the required 50% maximum requirement at 12.32%. The total disturbed area is approximately 32% of total parcel area. In addition to the recommended best management practices, there will remain an undisturbed wooded and grass buffer approximately one hundred feet wide running

the length of Singletary Brook. This in conjunction with properly maintained BMP's will result in no degradation of water quality during project construction.

Once operational, the two subsurface chamber style detention basins in conjunction with pervious pavers, and the 40% void of clean rock will increase TSS removal. The volume created by the extended detention will result in 80% removal of total suspended solids. In addition, precast concrete sump type inlets will be used upstream of the detention basins to provide additional pre-treatment. The basins will release at the pre-developed volume allowing for the outlet structure rip-rap to effectively reduce the discharge to a non-erosive velocity.

## System Capacity

# **Potable Water**

There is an existing 8" water main that runs along the west side of Burbank Street adjacent to the site. At a predevelopment meeting at the City of Millbury, the utility provider stated that the hydrant has a static pressure of 90 psi. Based on this static pressure, a simulation was run using EPA Net. The existing distribution system can deliver 1,500 gallons per minute via a proposed eight inch fire main to a fire hydrant serving the first floor Building 2, the upper building, at 39.8 psi while also delivering 50 gpm to the roof at 27.1 psi. It may be necessary to install a booster within Building 2 to provide adequate pressure for the fire suppression system.

For the potable distribution system, a four inch main will be installed, this system will be able to deliver 50 gpm to the roof of Building 2 at 54.8 psi, and 50 gpm to the roof of the lower building, Building 1, at 64 psi. It may be necessary to install a pressure reducing valve within each building to ensure the operating pressure does not exceed 80 psi on the lower floor of the building.

## **Sanitary Sewer**

There is an existing 8" gravity sewer main that runs along Burbank Street adjacent to the site. At minimum pipe slope for an 8" PVC pipe, the capacity at full flow is 412 gpm or 593,000 gallons per day. At 300 gallons per day per home, the main has the capacity to serve approximately 1,900 homes. The proposed average flow from the development is estimated to be 15.9 gpm, with an estimated peak flow of 58.43 gpm. At worst case, these flows represent 3.8% and 14.1% of the available capacity, respectively. Based on the site location and the use of the potential service area, the existing 8" main has adequate capacity to serve the project.

## Solid Waste

Each of the proposed buildings will have a trash shoot that empties into a trash room located in the parking area below the building. In addition, there will dumpsters located at several locations within the parking lot.

#### Electricity

The electricity for the site will be provided by NextEra Energy Services, the current utility provider for the area.

#### **Mitigation Measures**

Both a construction period and a permanent pollution prevention plan have been developed to ensure that the site contractor has effective measures to accommodate various site conditions.

Given the proposed grading plan and the building design, the surface parking areas will need to be stabilized with aggregate to provide parking and staging areas for both construction workers and building materials. This should bring approximately 3.12 acres of disturbed area to a stabilized condition once site grading and the utilities are installed.

The total area of wooded upland to be disturbed is approximately 32% of the total parcel area. In addition to best management practices, there will remain an undisturbed wooded and grass buffer that is one hundred and fifty feet wide along the entire length of the disturbed area. This buffer, in conjunction with properly maintained BMP's, should result in no degradation of water quality.

### **Fiscal Impact:**

The proposed mixed-use redevelopment will cost approximately fifty million dollars to construct. This investment within the community will include the employment of design and construction professionals, the employment of craftsman and laborers, the purchase of building materials from local suppliers, and the payment of sales and other taxes.

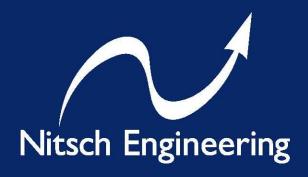
Once complete, the project will become a vibrant center of both residential and commercial activity. This in turn will create an incentive for others to redevelop the West Main Street corridor resulting in additional economic benefit for both the community and City.

At five thousand dollars per unit, the sewer connection fee for the 198 apartment units will be \$990,000, and the water tap fee at eleven hundred dollars per unit will be \$217,800. Given the utility improvements necessary to serve the project will be installed and paid for by the developer, the utility providers will have adequate funding to make any minor improvements necessary to serve the project.

In addition, the project will also increase property values of adjoining parcels as well as the commercial corridor of Wets Main Street adding to the beneficial impact of the proposed project.

#### **Historic Impact:**

The project includes the redevelopment of one of the most iconic buildings in the region, the Steelcraft Building. The buildings history dates to the Revolutionary War where it operated as a paper mill. Then it was transformed into the Mayo Woolen Factory employing townspeople who resided in tenements located in the same wooded upland as the proposed buildings. In its current state, the building houses an operating medical equipment manufacturing facility. Throughout its history, the improvements have enriched the community with housing, employment, and manufactured goods.


In addition, the ancient hose house, which is adjacent to the former mill pond, will also be revitalized as part of the redevelopment project.

#### **Development Goals:**

The building is located in the Bramanville Village District which was created to spur redevelopment of the central part of the Bramanville District. The intent of the district is to create a vibrant, pedestrian friendly village center. As stated in the ordinance, this is to be accomplished by allowing high-density residential and small-scale commercial uses to serve the residents of the area. As intended by the special zoning district, this development will create property with a unique identity on a village scale.

The proposed redevelopment project includes 198 apartment units, twenty-four hundred square feet of restaurant space, and ten thousand square feet of office/workshare space. The existing mill building will be redeveloped in a manner which maintains its architectural character. The proposed buildings have been placed in a manner that best suits the site topography. To create a village atmosphere, the architectural elements of the proposed buildings mimic those of the existing mill building. This redevelopment will offer the tenants and residents of the community a village center within the Bramanville District.

# Appendix A Traffic Study



# **Traffic Assessment Report**

115 West Main Street

Millbury, MA

April 30, 2020

Prepared for:

Douglas Backman 115 West Main Street Millbury, MA 01527

Submitted by:

Nitsch Engineering 370 Main Street, Suite 850 Worcester, MA 01608

Nitsch Engineering Project #14139

Building better communities with you.

# TABLE OF CONTENTS

|   | In                                                                              | troduction                                                                                                                                                                                                                                                                                   | 1                                                              |
|---|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|   | 1.1                                                                             | Existing Site                                                                                                                                                                                                                                                                                | 1                                                              |
|   | 1.2                                                                             | Proposed Development                                                                                                                                                                                                                                                                         |                                                                |
|   | 1.3                                                                             | Study Area                                                                                                                                                                                                                                                                                   |                                                                |
|   | 1.4                                                                             | Methodology                                                                                                                                                                                                                                                                                  | 2                                                              |
| 2 | E                                                                               | cisting Conditions                                                                                                                                                                                                                                                                           | 5                                                              |
| 4 | 2.1                                                                             | Study Roadways                                                                                                                                                                                                                                                                               | 5                                                              |
| 4 | 2.2                                                                             | Study Intersection                                                                                                                                                                                                                                                                           |                                                                |
|   | 2.3                                                                             | Public Transportation                                                                                                                                                                                                                                                                        |                                                                |
|   | 2.4                                                                             | Bicycle Facilities                                                                                                                                                                                                                                                                           |                                                                |
|   | 2.5                                                                             | Pedestrian Facilities                                                                                                                                                                                                                                                                        | 6                                                              |
| 3 | E                                                                               | cisting Traffic Conditions                                                                                                                                                                                                                                                                   | 6                                                              |
| 4 | 3.1                                                                             | Traffic Count Data                                                                                                                                                                                                                                                                           |                                                                |
| 4 | 3.2                                                                             | Seasonal Adjustment                                                                                                                                                                                                                                                                          | 7                                                              |
| 4 | 3.3                                                                             | Safety Review                                                                                                                                                                                                                                                                                | 7                                                              |
| _ | с.                                                                              | the Devild Traffic Conditions                                                                                                                                                                                                                                                                |                                                                |
| 4 | FU                                                                              | Iture No-Build Traffic Conditions                                                                                                                                                                                                                                                            | 10                                                             |
| - | רו<br>4.1                                                                       | Background Growth                                                                                                                                                                                                                                                                            |                                                                |
|   |                                                                                 |                                                                                                                                                                                                                                                                                              | 10                                                             |
| - | 4.1<br>4.2<br>4.3                                                               | Background Growth<br>Planned Roadway Improvements<br>Additional Development                                                                                                                                                                                                                  | 10<br>11<br>11                                                 |
| - | 4.1<br>4.2                                                                      | Background Growth<br>Planned Roadway Improvements                                                                                                                                                                                                                                            | 10<br>11<br>11                                                 |
| - | 4.1<br>4.2<br>4.3<br>4.4                                                        | Background Growth<br>Planned Roadway Improvements<br>Additional Development                                                                                                                                                                                                                  | 10<br>11<br>11<br>11                                           |
| 5 | 4.1<br>4.2<br>4.3<br>4.4                                                        | Background Growth<br>Planned Roadway Improvements<br>Additional Development                                                                                                                                                                                                                  | 10<br>11<br>11<br>11<br><b>13</b>                              |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br><b>Pr</b><br>5.1<br>5.2                             | Background Growth<br>Planned Roadway Improvements<br>Additional Development<br>2025 No-Build Traffic Volumes<br>roposed Future Conditions<br>Proposed Site Changes<br>Trip Generation                                                                                                        | 10<br>11<br>11<br>11<br><b>13</b><br>13                        |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br><b>Pr</b><br>5.1<br>5.2<br>5.3                      | Background Growth<br>Planned Roadway Improvements.<br>Additional Development<br>2025 No-Build Traffic Volumes<br><b>roposed Future Conditions</b><br>Proposed Site Changes<br>Trip Generation<br>Trip Distribution                                                                           | 10<br>11<br>11<br>13<br>13<br>13<br>14                         |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br><b>Pr</b><br>5.1<br>5.2<br>5.3<br>5.4               | Background Growth<br>Planned Roadway Improvements<br>Additional Development                                                                                                                                                                                                                  | 10<br>11<br>11<br>13<br>13<br>13<br>14<br>14                   |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5                     | Background Growth<br>Planned Roadway Improvements<br>Additional Development<br>2025 No-Build Traffic Volumes<br><b>roposed Future Conditions</b><br>Proposed Site Changes<br>Trip Generation<br>Trip Distribution<br>Trip Assignment<br>2025 Build Traffic Volumes and Operations Assessment | 10<br>11<br>11<br>13<br>13<br>13<br>14<br>14                   |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br><b>Pr</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6 | Background Growth<br>Planned Roadway Improvements<br>Additional Development                                                                                                                                                                                                                  | 10<br>11<br>11<br>13<br>13<br>13<br>14<br>14<br>16<br>18       |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7       | Background Growth<br>Planned Roadway Improvements<br>Additional Development<br>2025 No-Build Traffic Volumes<br><b>roposed Future Conditions</b><br>Proposed Site Changes<br>Trip Generation<br>Trip Distribution<br>Trip Assignment<br>2025 Build Traffic Volumes and Operations Assessment | 10<br>11<br>11<br>13<br>13<br>13<br>14<br>14<br>16<br>18<br>19 |

## **LIST OF TABLES**

| Table 1 – Apartment Mix                                                 | 1    |
|-------------------------------------------------------------------------|------|
| Table 2 – Crash Statistics                                              |      |
| Table 3 – Crash Rate Summary                                            |      |
| Table 4 – Background Annual Traffic Growth Rate                         | . 10 |
| Table 5 – Stratford Village Peak Hour Trip Generation                   | . 11 |
| Table 6 – Peak Hour Trip Generation                                     | . 13 |
| Table 7 – Mode Share for the Proposed Development (Net Trip Generation) | . 14 |
| Table 8 – Trip Distribution                                             |      |
| Table 9 – Increase in Traffic at Study Intersection                     | . 16 |
| Table 10 – ITE Parking Generation                                       |      |
| Table 11 – Parking Comparison                                           | . 18 |

# LIST OF FIGURES

| Figure 1 – Locus Map                                          | 3  |
|---------------------------------------------------------------|----|
| Figure 2 – Study Area                                         |    |
| Figure 3 – 2020 Existing Peak Hour Traffic Volumes            |    |
| Figure 4 – 2025 No-Build Conditions Peak Hour Traffic Volumes | 12 |
| Figure 5 – Trip Assignment                                    | 15 |
| Figure 6 – 2025 Build Conditions Peak Hour Traffic Volumes    |    |



#### **1** Introduction

Nitsch Engineering (Nitsch) has prepared this Traffic Assessment Report (TAR) for the proposed development at 115 West Main Street, Millbury, MA. This TAR will discuss the existing roadway conditions, access/egress, crash data, and traffic volumes; and assess the existing and future conditions at the intersections at the study location to establish the impact of the proposed development on traffic operations.

Figure 1 shows the Locus Map and Figure 2 shows the study area.

#### 1.1 Existing Site

The proposed development site is bounded by West Main Street to the west, Burbank Street to the north, a landscaped lot to the east, and Singletary Brook to the south.

The site is occupied by 3-story and 2-story buildings annexed together, comprising approximately 35,000 square feet of gross floor area and is used by Steelcraft Inc., a manufacturer of medical equipment. Vehicular access is not provided to the site however pedestrian access to the buildings is provided via the Burbank Street and the West Main Street entrances. Parking spaces are provided on the northwest side of the buildings along Burbank Street.

#### 1.2 Proposed Development

Based on the site improvement plan, the project will construct two (2) new 3-story buildings and renovate the existing Steelcraft buildings to create 197 residential units. The current plan for the apartment mix is shown in Table 1.

| Туре       | Percent Mix | Number of Units | Number of Bedrooms |
|------------|-------------|-----------------|--------------------|
| Efficiency | 51%         | 100             | 100                |
| 1-Bedroom  | 36%         | 70              | 70                 |
| 2-Bedroom  | 13%         | 27              | 54                 |
| Total      | 100%        | 197             | 224                |

| Table 1 – A | partment Mix |
|-------------|--------------|
|-------------|--------------|

In addition, 2,400 square feet will be allocated for restaurants and 7,500 square feet will be allocated for office space. A small, approximately 1,400-square-foot, 2-story parking garagse will be constructed on the western side of the site. A total of 330 parking spaces will be provided on site; 295 parking spaces in the apartment complex underground parking garages, 27 surface parking spaces on Burbank Street, and 8 surface parking spaces on West Main Street. 74 spaces will be allocated to restaurant and office space users. Access to the parking garages will be provided via two separate entrances on Burbank Street.

#### 1.3 Study Area

The study area includes the 115 West Main Street Development driveways, the adjacent three (3) roadways and one (1) intersection.

#### Roadways

- West Main Street
- Burbank Street
- High Street

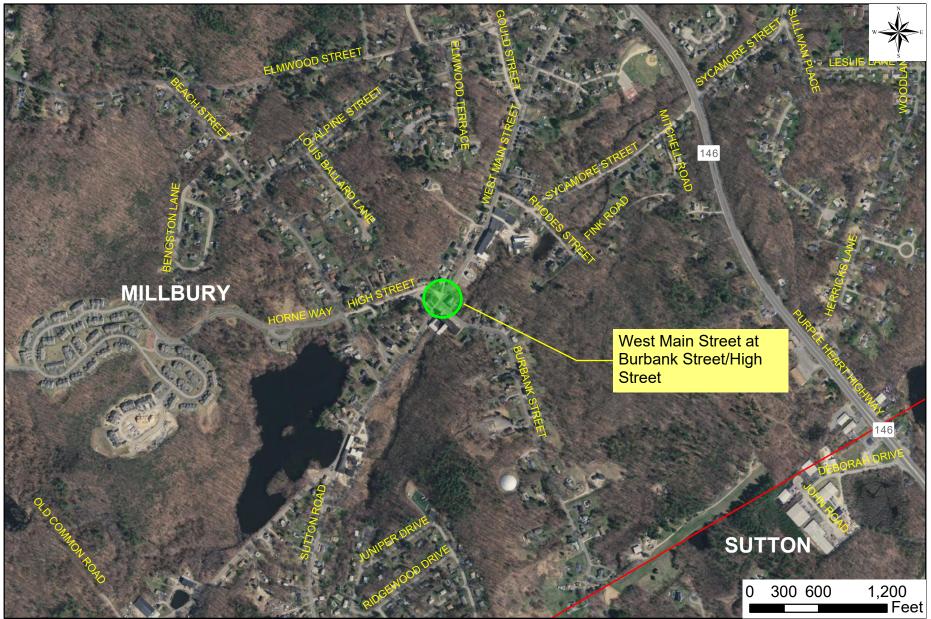
#### Intersection

• West Main Street at Burbank Street/High Street

#### 1.4 Methodology

The traffic analysis herein is summarized in the following sections:

- 1. An inventory of existing transportation conditions, including roadway, parking, transit, pedestrian, and bicycle circulation.
- 2. An evaluation of future transportation conditions and an assessment of potential traffic impacts associated with the Project and other neighboring projects. Long-term impacts are evaluated for the year 2025, based on a five-year horizon from the 2020 base year. Expected roadway, parking, transit, pedestrian, and loading conditions and deficiencies are identified. This section includes the following scenarios:
  - a. The No-Build Scenario (2025) includes general background growth and additional vehicular traffic associated with specific proposed or planned developments and roadway changes in the vicinity of the Project site; and
  - b. The Build Scenario (2025) includes specific travel demand forecasts for the Project.
- 3. An identification of appropriate measures to mitigate Project-related impacts identified in the previous phase.
- 4. An evaluation of short-term traffic impacts associated with construction activities is also included.




# Figure 1: Locus Map

115 West Main Street Millbury, MA

Nitsch Engineering

Data Source: MassGIS Nitsch Project #14139



# Figure 2: Study Area

115 West Main Street Millbury, MA



Data Source: MassGIS Nitsch Project #14139

# 2 Existing Conditions

#### 2.1 Study Roadways

#### West Main Street

West Main Street is a two-way urban minor arterial under the Town of Millbury jurisdiction, that runs in the northsouth direction from its northern terminus at the Worcester-Providence Turnpike (Rte. 146) to Singletary Road and then continues in the east-west direction from Singletary Road to its western terminus at the Town of Auburn boundary. In the immediate vicinity of the site, West Main Street is separated by a double yellow center line (DYCL), providing one 15-foot-wide lane in the northbound direction and one 18-foot-wide lane in the southbound direction. Sidewalks are present continuously on the northbound side of the roadway. Speed limit or on-street parking restriction signs are not posted in the immediate vicinity of the site.

#### Burbank Street

Burbank Street is a two-way local roadway under the Town of Millbury jurisdiction that runs in the general northsouth direction from its northern terminus at West Main Street to its southern terminus at Boston Road. In the immediate vicinity of the site, Burbank Street is 24 feet wide although no lane markings are provided. Asphalt sidewalks are present on both sides of the roadway. Speed limit or on-street parking restriction signs are not posted in the immediate vicinity of the site.

#### High Street

High Street is a two-way local roadway under the Town of Millbury jurisdiction that runs in the general east-west direction from its eastern terminus at West Main Street to its western terminus at Beach Street where it transitions to Horne Way. In the immediate vicinity of the site, High Street is 20 feet wide although no lane markings are provided. Sidewalk is present on the south side of the roadway. Speed limit or on-street parking restriction signs are not posted in the immediate vicinity of the site.

#### 2.2 Study Intersection

#### West Main Street at Burbank Street/High Street

West Main Street intersects with Burbank Street and High Street to form an offset four-legged unsignalized intersection, with West Main Street operating freely and approaching from the north and the south, Burbank Street operating under stop control and approaching from the east, and High Street operating under stop control and approaching from the east, and High Street operating under stop control and approaching from the east, and High Street operating under stop control and approaching from the east, and High Street operating under stop control and approaching from the east, and High Street operating under stop control and approaching from the east, and High Street operating under stop control and approaching from the east.

The West Main Street northbound approach to the intersection consists of one 16-foot wide through/left turn/right turn lane and the West Main Street southbound approach consists of one 18-foot wide through/left turn/right lane. The High Street eastbound approach consists of one 10-foot wide through/left turn/right turn lane and the Burbank Street westbound approach consists of one 14-foot wide through/left turn/right turn lane.

At the intersection, four (4) angled parking spaces are provided on the north side of Burbank Street for the Village Knoll market and unmarked parking spaces are located on the south side of Burbank Street for the existing Steelcraft building. Crosswalks are present at the southbound and westbound approaches however the wheelchair ramps appear to be not ADA-compliant as they are missing detectable warning panels.

#### 2.3 Public Transportation

Public transportation services are not available in the vicinity of the site. However, Worcester Regional Transit Authority (WRTA) provides bus services at Millbury Town Center which is about 1.0 miles northeast of the site. WRTA provides direct connections to Worcester Union Station, Northbridge, and Grafton from the Town Center. WRTA also provides paratransit service for the elderly and disabled from 8:00 AM to 4:30 PM. In addition, the Town of Millbury provides curb-to-curb van services for the elderly and disabled.

#### 2.4 Bicycle Facilities

Shared or dedicated bike lanes are not present on the subject roadways. Shoulders are also not provided on these roadways. There is a proposed 48-mile-long bikeway, the Blackstone River Bikeway, consisting of on and off-road segments along the Blackstone River, connecting Worcester, MA and Providence, RI. A 2.5-mile segment of the bikeway between the Blackstone Heritage Corridor Visitor Center in Worcester and the parking lot at 1265 Millbury Street in Milbury, approximately 1.75 miles north of the site, has been completed.

#### 2.5 Pedestrian Facilities

Near the project site, sidewalks are present on both sides of West Main Street and Burbank Street, and the southbound side of High Street, providing a good opportunity for pedestrian mobility. Crosswalks are present on Burbank Street and the north of West Main Street. However, ADA compliant ramps and detectable panels are not present.

## 3 Existing Traffic Conditions

#### 3.1 Traffic Count Data

We reached out to the Town of Millbury and the Central Massachusetts Regional Planning Commission (CMRPC) as well as reviewed the MassDOT Transportation Data Management System (TDMS) to determine if traffic count data is available for our study intersections and roadways. We had also coordinated with the Project Manager for MassDOT's recently completed project at the intersection of Route 146 over West Main Street and obtained the Functional Design Report and traffic data for this project. Turning Movement Count (TMC) data at the study intersection was not available in any of the reports, however, we obtained hourly traffic data at the following two locations:

- West Main Street, west of Sutter Road, data collected on 6/20/2017 (from CMRPC)
- On Sutton Road, east of West Main Street, data collected on 6/20/2017 (from MassDOT TDMS)

We used the hourly traffic data from these two locations to estimate West Main Street northbound and southbound morning and evening peak hour traffic. The data from these two locations are included in Appendix A.

We applied a seasonal adjustment factor (0.89) and a background growth factor (0.6%) to the estimated data to obtain 2020 peak hour data at the study intersection. Discussions on seasonal adjustment factor and background growth rate are described in sections 3.2 and section 4.1, respectively. We were not able to obtain data for Burbank Street or High Street. As the traffic from the existing land uses on Burbank Street would be potentially



low relative to West Main Street, we assumed that there would be no traffic impact on the study intersection by Burbank Street or High Street traffic. Figure 3 presents the 2020 Existing Peak Hour Volumes.

#### 3.2 Seasonal Adjustment

Nitsch Engineering researched MassDOT traffic data for counts nearby that would establish a seasonal adjustment for the volumes we obtained from 2017. Due to the lack of data on comparable roadways in the vicinity of the project location, we used MassDOT's 2017 Weekday Seasonal Adjustment Factors. West Main Street falls withing Group U4 – "Urban Minor Arterial" for which the seasonality factor for the month of June is 0.89. We multiplied this factor to the to adjust the existing data. MassDOT's 2017 Weekday Seasonal Factors is included in Appendix B.

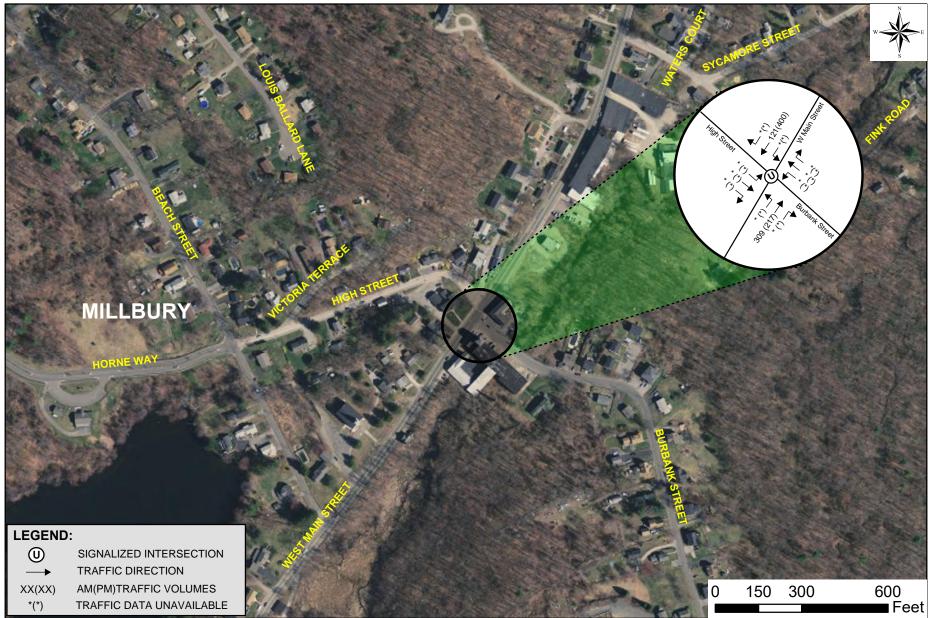
#### 3.3 Safety Review

We obtained crash data within the study intersection for three (3) most recent years (2017-2019) available from Millbury Police Department. Table 2 summarizes the crash statistics for the study intersection.

|                      | Number of Crashes |                  |                   | Severity |                 |     | Manner of Collision |    |         | Percent During |                    |                                    |                            |                       |
|----------------------|-------------------|------------------|-------------------|----------|-----------------|-----|---------------------|----|---------|----------------|--------------------|------------------------------------|----------------------------|-----------------------|
| Location             | Year              | Total<br>Crashes | Annual<br>Average | PDª      | PI <sup>b</sup> | NR℃ | Fď                  | Ae | RE<br>f | HO<br>g        | Other <sup>h</sup> | Incl.<br>Ped-<br>Bike <sup>j</sup> | Peak<br>Hours <sup>k</sup> | Wet/Icy<br>Conditions |
| West Main            | 2017              | 2                |                   |          |                 | 2   |                     | 1  |         |                | 1                  |                                    |                            |                       |
| Street at<br>Burbank | 2018              | 3                | 3.0               | 2        | 1               |     |                     | 2  | 1       |                |                    |                                    | 67%                        |                       |
| Street/High          | 2019              | 4                | 5.0               | 4        |                 |     |                     | 1  | 1       |                | 2                  |                                    | 25%                        |                       |
| Street               | Total             | 9                |                   | 6        | 1               | 2   | 0                   | 4  | 2       | 0              | 3                  | 0                                  | 33%                        | 0                     |

| Table | 2 – | Crash | <b>Statistics</b> |
|-------|-----|-------|-------------------|
|-------|-----|-------|-------------------|

A total of 9 crashes were reported within the study intersection from 2017 to 2019. In terms of severity, one (1) crash reported personal injury, and there were no crashes with reported fatalities. Angle crashes were the most frequent type of crash with a total of four (4) crashes, and of the remaining crashes, two (2) were rear-end, one (1) was single vehicle, one (1) crash was rear-to-rear, and one (1) crash was sideswipe (same direction). No pedestrian crashes were reported. 33% of all crashes in the study area occurred during peak hours.


Crash rates for intersections are expressed by the number of crashes per million entering vehicles (MEV), and crash rates for roadway segments are expressed by the number of crashes per million vehicle miles traveled (MVMT). Table 3 compares the crash rates for the study.

| Location                                                                                                                                                                                                                                             | Facility Type | Number<br>of<br>Crashes <sup>a</sup> | Crash<br>Rate⁵ | Average    | Rates <sup>b,c</sup> | Comparison to<br>Average Rates |           |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|----------------|------------|----------------------|--------------------------------|-----------|--|
|                                                                                                                                                                                                                                                      |               |                                      | Rale           | District 3 | Statewide            | District 3                     | Statewide |  |
| West Main Street at<br>Burbank Street/<br>High Street                                                                                                                                                                                                | Unsignalized  | 9                                    | 1.05           | 0.61       | 0.57                 | Above                          | Above     |  |
| a Based on 3-year crash history from MassDOT, 2017-2019 b Intersections: Crashes per million entering vehicles (MEV),<br>Roadway Segments: Crashes per million vehicle miles traveled (MVMT) c Based on latest MassDOT crash data queried June 2018. |               |                                      |                |            |                      |                                |           |  |

#### Table 3 – Crash Rate Summary

As shown in Table 3, the Crash Rate at the study intersection is above the District 3 and statewide averages.





# Figure 3: 2020 Existing Traffic Volumes

115 West Main Street Millbury, MA



### 4 Future No-Build Traffic Conditions

We used the seasonally adjusted and projected 2020 existing peak hour traffic volumes as the baseline for projecting traffic volumes to the future 2025 no-build condition. To determine the future 2025 no-build condition volumes, we performed the following steps:

- Project the 2020 traffic volumes five years into the future to the horizon year, 2025, using an annual background traffic growth factor;
- Include any planned roadway improvements that may affect traffic volumes; and
- Add traffic volumes associated with any planned developments that may impact the study area.

#### 4.1 Background Growth

MassDOT records traffic volumes at various stations throughout the Commonwealth over multiple years to identify regional shifts in traffic. Nitsch Engineering researched MassDOT count stations near the study area to determine a traffic volume trend throughout the years of volume data available. Due to the lack of continuous count stations in Millbury or nearby towns, we used MassDOT count station #240697, located on Singletary Road at the boundary of the Town of Millbury and the Town of Sutton, about 0.6 mile southwest of the study intersection. Table 4 depicts the traffic volumes and the calculated growth rate for a 2- year period.

|                                                                                                                                                                                 | AADT  | <sup>1</sup> , Year |                    |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------|--------------------|--|--|--|--|
| Count Location                                                                                                                                                                  | 2017  | 2019                | Annual Growth Rate |  |  |  |  |
| Singletary Road at Sutton Town                                                                                                                                                  | 2,397 | 2 204               | 2017 - 2019        |  |  |  |  |
| Boundary                                                                                                                                                                        | 2,397 | 2,394               | -0.06%             |  |  |  |  |
| <sup>1</sup> Annual Average Daily Traffic (AADT) is the average traffic volume for the entire given calendar yea (Source: Massachusetts Department of Transportation (MassDOT)) |       |                     |                    |  |  |  |  |

Table 4 – Background Annual Traffic Growth Rate

Table 4 shows a background traffic growth rate about -0.06% per year between 2017 and 2019. However, using a negative growth rate is not an accurate means for projecting future traffic. Therefore, we reviewed the FDR received for MassDOT's Route 146 over West Main Street Project and used a 0.6% growth rate to represent regional background growth of traffic in this area. Per the FDR, this rate was calculated by taking the average of the employment and population growth values from the transportation analysis zones in the CMRPC's regional model for current and future analysis years. We applied this growth rate over a 3-year period to project 2020 Existing peak hour counts (Figure 3) and over the 5-year design period from 2020 to estimate 2025 for future no build traffic data.

#### 4.2 Planned Roadway Improvements

We researched the MassDOT Project Information website<sup>1</sup> to establish if there are any planned roadway improvements in the towns near the study area that could potentially affect traffic operations. We have not identified any project that is under construction or in design that could potentially impact the study intersection.

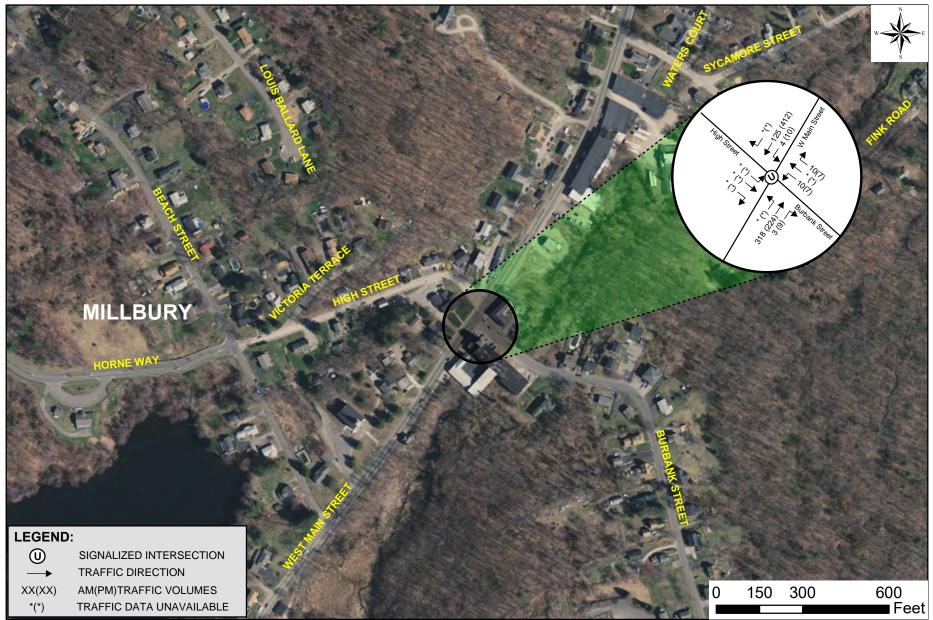
#### 4.3 Additional Development

We contacted the Town of Millbury to establish if any planned developments will potentially add traffic to the study area. We obtained information on one housing development project, Stratford Village, that is under construction near the site. The development involves the construction of 49 duplex and triplex townhouses at 42 Burbank Street. The development was originally approved as a 55 and older development but now the requirement has been lifted. Access to the development will be provided via an entrance on Burbank Street.

We obtained the vehicular trip generation at Stratford Village by using the Institute of Transportation Engineers' (ITE) *Trip Generation, 10<sup>th</sup> Edition*<sup>2</sup> ("the ITE method"). As most units are duplexes, we used Land Use Code (LUC) 220 – "Multifamily Housing (Low-Rise)", which includes apartments, townhouses, and condominiums located within the same building with at least three (3) other dwelling units and between one (1) or two (2) levels (floors) of residence. Table 5 shows the trips generated from Stratford Village.

| Period             | Direction | Stratford<br>Village<br>(vehicle) |
|--------------------|-----------|-----------------------------------|
|                    | Enter     | 7                                 |
| Weekday<br>morning | Exit      | 20                                |
| morning            | Total     | 27                                |
|                    | Enter     | 19                                |
| Weekday<br>evening | Exit      | 14                                |
| overning           | Total     | 33                                |

#### Table 5 – Stratford Village Peak Hour Trip Generation


To assess the impact at our study intersection, we assumed that all trips generated from Stratford Village will be distributed at our study intersection. We applied the trip distribution discussed in section 5.3 to get the trip assignment at our study intersection.

#### 4.4 2025 No-Build Traffic Volumes

The 2025 future year traffic volumes were calculated by projecting the 2020 traffic volumes and applying the 0.6% annual traffic increase over the five-year assessment period and then adding the trips generated by the Stratford Village. The results are presented in Figure 4.

<sup>&</sup>lt;sup>1</sup> <u>https://hwy.massdot.state.ma.us/projectinfo/projectinfo.asp</u>

<sup>&</sup>lt;sup>2</sup> Trip Generation, Institute of Transportation Engineers, 10th Edition, 2016, Washington, D.C



# Figure 4: 2025 Future No-Build Traffic Volumes

115 West Main Street Millbury, MA



# 5 Proposed Future Conditions

#### 5.1 Proposed Site Changes

The proposed project will renovate the existing Steelcraft buildings and construct two (2) new 3-story buildings to create 197 studio, one-bedroom, and two-bedroom apartments, 2,400 square feet restaurant space, and 7,500 square feet office space, and construct a small, approximately 1,400-square-foot, 2-story parking garage. A total of 330 parking spaces will be provided on site: 295 parking spaces in the apartment complex underground parking garages, 27 surface parking spaces on Burbank Street, and 8 surface parking spaces on West Main Street. 74 spaces will be allocated to restaurant and office space users. Access to the parking garages will be provided via two separate entrances on Burbank Street.

#### 5.2 Trip Generation

We estimated the trip generation for the existing use and the proposed use to obtain the net trip generation by using the Institute of Transportation Engineers' (ITE) *Trip Generation, 10<sup>th</sup> Edition*<sup>3</sup> ("the ITE method"). For the existing Steelcraft buildings we used Land Use Code (LUC) 140 – "Manufacturing". For the new apartment complex, we used Land Use Code (LUC) 221 – "Multifamily Housing (Mid-Rise)", which includes apartments, townhouses, and condominiums located within the same building with at least three (3) other dwelling units and between three (3) and 10 levels (floors) of residence. For the offices, we used Land Use Code (LUC) 710-"General Office Buildings". For the restaurants, we used Land Use Code (LUC) 932- "High-Turnover (Sit-Down) Restaurant". We obtained person-trips for apartment complex and office spaces and vehicle-trips for manufacturing buildings and restaurants as ITE does not provide person-trips for these categories.

Based on the Town of Millbury 2019 Master Plan<sup>4</sup>, less than 15% of Millbury's employed labor force works in Millbury and most residents prefer to use personal vehicles over other modes of travel. About 84% of travelers use single occupancy vehicles and 11% carpool, suggesting that 95% of people prefer cars. Therefore, the average vehicle occupancy factor is approximately 1.1 persons per vehicle which we applied to the vehicle trip generation for the existing Steelcraft buildings and future restaurants to estimate person-trips for these uses. We obtained the net future trips generated from the site by subtracting Future trips from the existing trips as shown in Table 6.

|                    |           | Futu                            | re Peak Hour                 | Trips                            | Existing Peak Hour<br>Trips   | Net Peak Hour      |  |
|--------------------|-----------|---------------------------------|------------------------------|----------------------------------|-------------------------------|--------------------|--|
| Period             | Direction | Apartment<br>Trips<br>(persons) | Office<br>Trips<br>(persons) | Restaurant<br>Trips<br>(persons) | Steelcraft Trips<br>(persons) | Trips<br>(persons) |  |
|                    | Enter     | 17                              | 10                           | 21                               | 22                            | 26                 |  |
| Weekday<br>morning | Exit      | 46                              | 1                            | 17                               | 9                             | 55                 |  |
| morning            | Total     | 63                              | 11                           | 38                               | 31                            | 81                 |  |
|                    | Enter     | 60                              | 2                            | 24                               | 13                            | 73                 |  |
| Weekday<br>evening | Exit      | 39                              | 10                           | 22                               | 18                            | 53                 |  |
| overning           | Total     | 99                              | 12                           | 46                               | 31                            | 126                |  |

#### Table 6 – Peak Hour Trip Generation

<sup>3</sup> Trip Generation, Institute of Transportation Engineers, 10th Edition, 2016, Washington, D.C.

<sup>4</sup> Comprehensive Master Plan 2019, Town of Millbury

13

#### Mode Share

The Town of Millbury 2019 Master Plan<sup>5</sup> published the transportation mode share which states that 95% of people use cars, only 1% of people use public transportation, and 3% of people work from home. We applied this data to the net peak hour trips (Table 6) to determine the mode share for the proposed development, which is shown in Table 7.

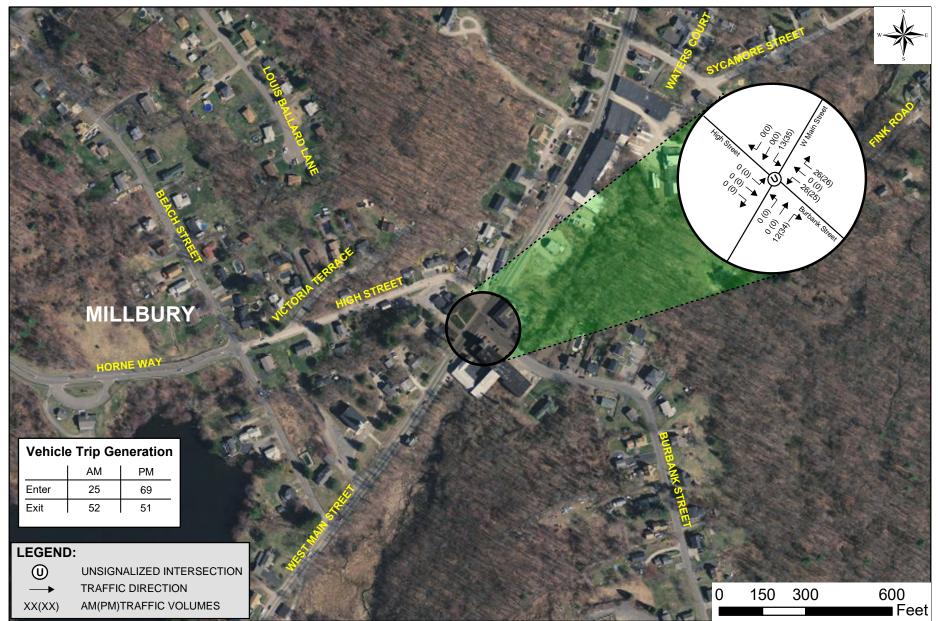
| Mode                      | Mode | We    | ekday Morr | ing   | Weekday Evening |      |       |  |
|---------------------------|------|-------|------------|-------|-----------------|------|-------|--|
| Mode                      | Shae | Enter | Exit       | Total | Enter           | Exit | Total |  |
| Vehicle (car and carpool) | 95%  | 25    | 52         | 77    | 69              | 51   | 120   |  |
| Public Transportation     | 1%   | 0     | 1          | 1     | 1               | 0    | 1     |  |
| Walk/ Bicycle             | 0%   | 0     | 0          | 0     | 0               | 0    | 0     |  |
| Work from Home            | 3%   | 1     | 1          | 2     | 2               | 2    | 4     |  |
| Other                     | 1%   | 0     | 1          | 1     | 1               | 0    | 1     |  |
| Total                     | 100% | 26    | 55         | 81    | 73              | 53   | 126   |  |

Table 7 – Mode Share for the Proposed Development (Net Trip Generation)

Detailed trip generation calculations are provided in Appendix D.

#### 5.3 Trip Distribution

We based the additional peak-hour trips to/from the site using the existing distribution. The results are shown in Table 8.


| Direction and Roadway                     | Percentage         |
|-------------------------------------------|--------------------|
| To/From North of W Main Street            | 50%                |
| To/From South of W Main Street            | 50%                |
| Total                                     | 100%               |
| Source: Figure 3 – 2020 Existing Peak Hou | Ir Traffic Volumes |

#### Table 8 – Trip Distribution

#### 5.4 Trip Assignment

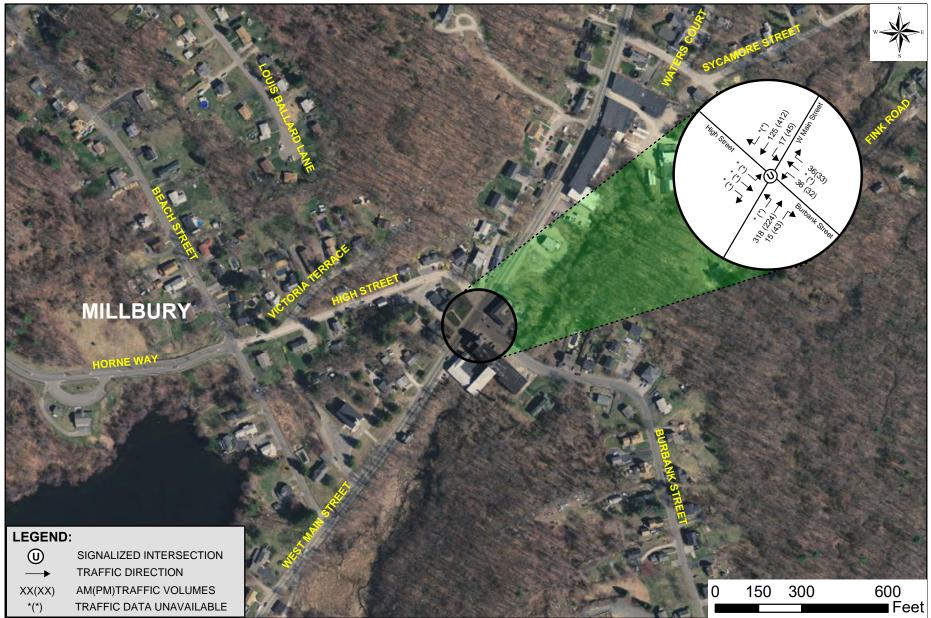
Between the two parking garage entrances and 27 on-street parking spaces on Burbank Street, 98% of project generated trips will be coming to/from Burbank Street. For the purposes of this assessment, we assumed that all peak hour trips will be distributed through Burbank Street. Therefore, we assigned the net peak-hour vehicle trips shown in Table 7 by the Trip Distribution percentages shown in Table 8. The resultant new trip assignment volumes are shown in Figure 5.

<sup>&</sup>lt;sup>5</sup> Comprehensive Master Plan 2019, Town of Millbury



# Figure 5: Net Trip Assignment

115 West Main Street Millbury, MA




#### 5.5 2025 Build Traffic Volumes and Operations Assessment

We added the Trip Assignment volumes from Figure 5 to 2025 No-Build conditions traffic volumes from Figure 4 to yield the 2025 Build conditions peak-hour traffic volumes, which are shown Figure 6. Table 9 shows the net increase in traffic to the intersection of West Main Street and Burbank Street/High Street from the 2025 No-Build condition to the 2025 Build Condition.

|                                | Tuble 5                  |                       |                     | ymerseenen               |                       |                     |
|--------------------------------|--------------------------|-----------------------|---------------------|--------------------------|-----------------------|---------------------|
|                                |                          |                       | Time Pe             | eriod                    |                       |                     |
| Roadway and                    | Week                     | day Morning P         | eak                 | Weekda                   | ay Evening Pea        | ak                  |
| Approach                       | 2025 No-Build<br>Traffic | 2025 Build<br>Traffic | Percent<br>Increase | 2025 No-Build<br>Traffic | 2025 Build<br>Traffic | Percent<br>Increase |
| Burbank Street<br>Westbound    | 20                       | 72                    | 260%                | 14                       | 65                    | 364%                |
| West Main Street<br>Northbound | 321                      | 333                   | 4%                  | 233                      | 267                   | 15%                 |
| West Main Street<br>Southbound | 129                      | 142                   | 10%                 | 435                      | 457                   | 5%                  |
| Total                          | 470                      | 547                   | 16%                 | 682                      | 789                   | 16%                 |

As seen in Table 9, the proposed development will increase intersection volumes by 16% in the morning peak hour and in the evening peak hour period to this intersection. As the increase in traffic in all approaches is considered low, it is unlikely that there would be any deficiency in traffic operations at this intersection.



# Figure 6: 2025 Build Condition Peak Hour Traffic Volumes

115 West Main Street Millbury, MA



#### 5.6 Parking Generation

To estimate the required amount of parking needed for the proposed development, we used the ITE *Parking General Manual*, 5th Edition. For the apartment complex, we used the Land Use Code 221 "Multifamily Housing (Mid-Rise)" with dwelling units as the independent variables. For the office space, we used the Land Use Code 710 "General Office Building" and for the restaurant, we used the Land Use Code 932 "High-Turnover (Sit Down) Restaurant". Table 10 shows the parking generated from each type of land use for weekday and Saturday.

| Period   |            | Туре   |             | Total |
|----------|------------|--------|-------------|-------|
| T enou   | Apartments | Office | Restaurants | Total |
| Weekday  | 258        | 18     | 23          | 299   |
| Saturday | 240        | 2      | 29          | 271   |

Table 10 – ITE Parking Generation

As reported by the developer, the project team met with the Town of Millbury's Technical Review Committee on March 16, 2020 and had negotiated parking requirements. Using the parking ratios, we calculated the amount of parking spaces required by the Town for each type of use. We provided the required parking along with the parking spaces provided and compared them to the ITE Parking Generation in Table 11.

| Table | 11 – Parking | Comparison |
|-------|--------------|------------|
| -     |              |            |

| Ту          | ре                               | Number<br>of Units/ Area     | TRC Parking<br>Requirements <sup>a</sup> | TRC Parking<br>Required <sup>a</sup> | Parking<br>Provided <sup>b</sup> | ITE Parking<br>Generation <sup>c</sup> |
|-------------|----------------------------------|------------------------------|------------------------------------------|--------------------------------------|----------------------------------|----------------------------------------|
|             | Efficiency                       | 100                          | 1 per dwelling unit                      | 100                                  | -                                | -                                      |
| Residential | 1-Bedroom                        | 70                           | 2 per dwelling unit                      | 140                                  | -                                | -                                      |
|             | 2-Bedroom                        | 27                           | 3 per 2-bedroom<br>dwelling unit         | 81                                   | -                                | -                                      |
|             |                                  |                              | <b>Residential Total</b>                 | 321                                  | 295                              | 258                                    |
| Office      | Space                            | 7,500 sq. ft.                | 1 per 200 sq. ft.<br>gross leasable area | 38                                   |                                  | 18                                     |
| Resta       | urants                           | 2,400 sq. ft.<br>(108 seats) | 1 per 4 seats                            | 27                                   |                                  | 23                                     |
|             |                                  |                              | <b>Commercial Total</b>                  | 65                                   |                                  | 41                                     |
| Addit       | ional Parking                    | (Burbank Street              | and West Main Street)                    |                                      | 35                               | -                                      |
|             |                                  |                              | Grand Total                              | 386                                  | 330                              | 299                                    |
|             | C agreed park<br>equired parking |                              | ment Plan, <sup>c</sup> Table 10 (rep    | oresents weekda                      | y requirement                    | s due to                               |

As shown in Table 11, the total number of spaces provided is 56 spaces less than the number of spaces required by the TRC therefore a variance will be required from the Town. However, the parking spaces provided exceeds the ITE parking requirements showing that it is anticipated the amount parking provided is sufficient to meet the demand.

#### 5.7 Construction Management Outline

During construction of the development, no detours or lane closures at any of the study intersections or study roadways is anticipated.

During construction, pedestrian accessibility should be maintained. If necessary, temporary crosswalks and ramps should be provided. All pedestrian accommodations should adhere to Massachusetts Architectural Access Board (MAAB) and Americans with Disabilities Act (ADA) guidelines.

### 6 Conclusions

Nitsch Engineering has prepared this Traffic Assessment Report (TAR) for the proposed development at 115 West Main Street, Millbury, Ma. We studied one (1) unsignalized intersection to assess the impact the renovation of the existing Steelcraft buildings and the construction of two (2) new 3-story buildings would have on the intersection traffic operations.

The crash data over the last three (3) years available from the Millbury Police Department indicate that the study intersections have crash rates above District 3 and statewide averages.

For future conditions, we projected the existing traffic volumes within the study area over a 5-year period to the horizon year 2025 using an annual growth rate of up to 0.6%, based on expected regional growth. We estimated the quantity of vehicle trips the proposed development would generate based on Institute of Transportation Engineers (ITE) *Trip Generation, 10<sup>th</sup> Edition* criteria. We applied an appropriate travel mode share based on the Town of Millbury Master Plan (2019) and distributed the additional vehicle trips to the roadway network using existing travel patterns and site access modification.

Our assessment shows that the increase of traffic caused by the development on the roadway network would be small, suggesting low impact on traffic operations and safety at the intersection. Therefore, we do not recommend any changes to the intersection geometry, traffic control, or roadway network.

# **APPENDIX CONTENTS**

| <u>Appendix</u> | Description                                        |
|-----------------|----------------------------------------------------|
| А               | Traffic Count Data                                 |
| В               | MassDOT's 2017 Weekday Seasonal Adjustment Factors |
| С               | Crash Rate Worksheet                               |
| D               | Detailed Trip Generation                           |



Appendix A: Traffic Count Data



| Street                 |         | est Main S  | treet     |          |           |          |         |             |          |    |          |    |         |    |          |          | Site:     | 2017108  |
|------------------------|---------|-------------|-----------|----------|-----------|----------|---------|-------------|----------|----|----------|----|---------|----|----------|----------|-----------|----------|
| Location               |         | est of Sutt |           |          |           |          |         |             |          |    |          |    |         |    |          |          |           |          |
|                        |         |             |           |          |           |          |         | Weekly      | Volume   |    |          |    |         |    |          |          |           |          |
|                        | Мо      | n           | Tu        | е        | Weo       | ł        | Thu     |             | Fri      |    | Sat      |    | Sun     |    | Mon -    | · Fri    |           |          |
| Interval               | 6/19/2  | 2017        | 6/20/2    |          | 6/21/2    | 017      | 6/22/20 | 17          | 6/23/201 | 17 | 6/24/201 | 17 | 6/25/20 | 17 | Avera    | age      | Weekly A  | verage   |
| Start                  | SB      | NB          | SB        | NB       | SB        | NB       | SB      | NB          | SB       | NB | SB       | NB | SB      | NB | SB       | NB       | SB        | NB       |
| 12:00 AM               | -       | -           | 14        | 3        | 10        | 6        | -       | -           | -        | -  | -        | -  | -       | -  | 12.0     | 4.5      | 12.0      | 4.5      |
| 1:00 AM                | -       | -           | 5         | 3        | 12        | 6        | -       | -           | -        | -  | -        | -  | -       | -  | 8.5      | 4.5      | 8.5       | 4.5      |
| 2:00 AM                | -       | -           | 2         | 4        | 1         | 2        | -       | -           | -        | -  | -        | -  | -       | -  | 1.5      | 3.0      | 1.5       | 3.0      |
| 3:00 AM                | -       | -           | 6         | 5        | 5         | 5        | -       | -           | -        | -  | -        | -  | -       | -  | 5.5      | 5.0      | 5.5       | 5.0      |
| 4:00 AM                | -       | -           | 8         | 20       | 11        | 22       | -       | -           | -        | -  | -        | -  | -       | -  | 9.5      | 21.0     | 9.5       | 21.0     |
| 5:00 AM                | -       | -           | 26        | 78       | 22        | 77       | -       | -           | -        | -  | -        | -  | -       | -  | 24.0     | 77.5     | 24.0      | 77.5     |
| 6:00 AM                | -       | -           | 56        | 151      | 65        | 163      | -       | -           | -        | -  | -        | -  | -       | -  | 60.5     | 157.0    | 60.5      | 157.0    |
| 7:00 AM                | -       | -           | 76        | 237      | 92        | 237      | -       | -           | -        | -  | -        | -  | -       | -  | 84.0     | 237.0    | 84.0      | 237.0    |
| 8:00 AM                | -       | -           | 97        | 191      | 81        | 186      | -       | -           | -        | -  | -        | -  | -       | -  | 89.0     | 188.5    | 89.0      | 188.5    |
| 9:00 AM                | -       | -           | 96        | 150      | 87        | 161      | -       | -           | -        | -  | -        | -  | -       | -  | 91.5     | 155.5    | 91.5      | 155.5    |
| 10:00 AM               | -       | -           | 105       | 116      | 133       | 140      | -       | -           | -        | -  | -        | -  | -       | -  | 119.0    | 128.0    | 119.0     | 128.0    |
| 11:00 AM               | -       | -           | 121       | 113      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 121.0    | 113.0    | 121.0     | 113.0    |
| 12:00 PM               | 147     | 114         | 152       | 128      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 149.5    | 121.0    | 149.5     | 121.0    |
| 1:00 PM                | 142     | 125         | 145       | 121      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 143.5    | 123.0    | 143.5     | 123.0    |
| 2:00 PM                | 183     | 158         | 161       | 142      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 172.0    | 150.0    | 172.0     | 150.0    |
| 3:00 PM                | 205     | 158         | 198       | 133      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 201.5    | 145.5    | 201.5     | 145.5    |
| 4:00 PM                | 273     | 140         | 265       | 144      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 269.0    | 142.0    | 269.0     | 142.0    |
| 5:00 PM                | 266     | 198         | 283       | 147      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 274.5    | 172.5    | 274.5     | 172.5    |
| 6:00 PM                | 184     | 120         | 189       | 117      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 186.5    | 118.5    | 186.5     | 118.5    |
| 7:00 PM                | 140     | 90          | 143       | 99       | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 141.5    | 94.5     | 141.5     | 94.5     |
| 8:00 PM                | 85      | 63          | 109       | 83       | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 97.0     | 73.0     | 97.0      | 73.0     |
| 9:00 PM                | 68      | 47          | 91        | 54       | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 79.5     | 50.5     | 79.5      | 50.5     |
| 10:00 PM               | 48      | 28          | 63        | 28       | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 55.5     | 28.0     | 55.5      | 28.0     |
| 11:00 PM               | 23      | 16          | 35        | 22       | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 29.0     | 19.0     | 29.0      | 19.0     |
| Totals                 | 1764    | 1257        | 2446      | 2289     | 519       | 1005     | 0       | 0           | 0        | 0  | 0        | 0  | 0       | 0  | 2425.0   | 2332.0   | 2425.0    | 2332.0   |
| Combined               | 302     | 1           | 473       | 35       | 1524      | ļ        | 0       |             | 0        |    | 0        |    | 0       |    | 4757     | .0       | 4757      | /.0      |
| Split (%)              | 58.4    | 41.6        | 51.7      | 48.3     | 34.1      | 65.9     | -       | -           | -        | -  | -        | -  | -       | -  | 51.0     | 49.0     | 51.0      | 49.0     |
|                        |         |             |           |          |           |          |         | Poak        | Hours    |    |          |    |         |    |          |          |           |          |
| 12:00 AM -             |         |             | 11.00 414 | 7.00 414 | 10.00 414 | 7.00 414 |         | <u>redk</u> | 10013    |    |          |    |         |    | 11.00    | 7.00 414 | 11.00 414 | 7.00 414 |
| 12:00 PM               | -       | -           | 11:00 AM  |          |           | 7:00 AM  | -       | -           | -        | -  | -        | -  | -       |    | 11:00 AM |          | 11:00 AM  | 7:00 AM  |
| Volume                 | -       | -           | 121       | 237      | 133       | 237      | -       | -           | -        | -  | -        | -  | -       | -  | 121.0    | 237.0    | 121.0     | 237.0    |
| 12:00 PM -<br>12:00 AM | 4:00 PM | 5:00 PM     | 5:00 PM   | 5:00 PM  | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 5:00 PM  | 5:00 PM  | 5:00 PM   | 5:00 PM  |
| Volume                 | 273     | 198         | 283       | 147      | -         | -        | -       | -           | -        | -  | -        | -  | -       | -  | 274.5    | 172.5    | 274.5     | 172.5    |

: Millbury

Town

|                  | Location Info                    |   |
|------------------|----------------------------------|---|
| Location ID      | 240697                           |   |
| Туре             | I-SECTION                        |   |
| Functional Class |                                  | 4 |
| Located On       | SINGLETARY AVENUE                |   |
| Between          | AND                              |   |
| Direction        | 2-WAY                            |   |
| Community        | Sutton                           |   |
| MPO_ID           |                                  |   |
| HPMS ID          |                                  |   |
| Agency           | Massachusetts Highway Department |   |
|                  |                                  |   |

|               | Inte | rval | : 15 | min | s            |
|---------------|------|------|------|-----|--------------|
| Time          |      | 15 I | Min  |     |              |
| Time          | 1st  | 2nd  | 3rd  | 4th | Hourly Count |
| 00:00 - 01:00 | 2    | 4    | 2    | 5   | 13           |
| 01:00 - 02:00 | 2    | 2    | 0    | 3   | 7            |
| 02:00 - 03:00 | 1    | 1    | 0    | 1   | 3            |
| 03:00 - 04:00 | 0    | 1    | 1    | 1   | 3            |
| 04:00 - 05:00 | 2    | 1    | 3    | 5   | 11           |
| 05:00 - 06:00 | 6    | 14   | 15   | 13  | 48           |
| 06:00 - 07:00 | 16   | 26   | 31   | 35  | 108          |
| 07:00 - 08:00 | 44   | 27   | 42   | 49  | 162          |
| 08:00 - 09:00 | 35   | 46   | 39   | 41  | 161          |
| 09:00 - 10:00 | 27   | 37   | 31   | 43  | 138          |
| 10:00 - 11:00 | 27   | 37   | 34   | 33  | 131          |
| 11:00 - 12:00 | 51   | 42   | 47   | 40  | 180          |
| 12:00 - 13:00 | 41   | 52   | 40   | 49  | 182          |
| 13:00 - 14:00 | 37   | 37   | 30   | 43  | 147          |
| 14:00 - 15:00 | 45   | 41   | 49   | 41  | 176          |
| 15:00 - 16:00 | 50   | 44   | 42   | 59  | 195          |
| 16:00 - 17:00 | 52   | 63   | 67   | 43  | 225          |
| 17:00 - 18:00 | 63   | 48   | 78   | 62  | 251          |
| 18:00 - 19:00 | 47   | 49   | 39   | 39  | 174          |
| 19:00 - 20:00 | 39   | 47   | 33   | 27  | 146          |
| 20:00 - 21:00 | 33   | 29   | 24   | 18  | 104          |
| 21:00 - 22:00 | 14   | 22   | 12   | 17  | 65           |

| Count Da     | ita Info  |
|--------------|-----------|
| Start Date   | 6/20/2017 |
| End Date     | 6/21/2017 |
| Start Time   | 10:45 AM  |
| End Time     | 10:45 AM  |
| Direction    |           |
| Notes        |           |
| Count Source | 240697    |
| File Name    |           |
| Weather      |           |
| Study        |           |
| Owner        | rpa05     |

| 22:00 - 2 | 23:00 | 20 | 14 | 10 | 9 | 53   |
|-----------|-------|----|----|----|---|------|
| 23:00 - 2 | 24:00 | 6  | 9  | 3  | 3 | 21   |
| TOTAL     |       |    |    |    |   | 2704 |

Appendix B: MassDOT's 2017 Weekday Seasonal Adjustment Factors

Nitsch Engineering

### Massachusetts Highway Department Statewide Traffic Data Collection 2017 Weekday Seasonal Factors

| Factor Group | JAN  | FEB  | MAR  | APR  | MAY  | JUN  | JUL  | AUG  | SEP  | ОСТ  | NOV  | DEC  | Axle Factor |
|--------------|------|------|------|------|------|------|------|------|------|------|------|------|-------------|
| R1           | 1.30 | 1.23 | 1.21 | 1.04 | 0.98 | 0.92 | 0.86 | 0.81 | 0.95 | 0.99 | 1.03 | 1.10 | 0.80        |
| R2           | 0.95 | 0.96 | 0.98 | 0.97 | 0.97 | 0.93 | 0.97 | 0.94 | 0.96 | 0.90 | 0.92 | 0.93 | 0.96        |
| R3           | 1.05 | 1.01 | 1.04 | 0.99 | 0.94 | 0.93 | 0.91 | 0.92 | 0.96 | 0.94 | 1.01 | 1.03 | 0.97        |
| R4-R7        | 1.10 | 1.07 | 1.09 | 1.00 | 0.95 | 0.89 | 0.88 | 0.87 | 0.92 | 0.95 | 1.04 | 1.09 | 0.93        |
| U1-Boston    | 1.01 | 1.04 | 0.99 | 0.94 | 0.93 | 0.92 | 0.96 | 0.93 | 0.94 | 0.93 | 0.95 | 0.98 | 0.95        |
| U1-Essex     | 1.04 | 1.05 | 1.00 | 0.96 | 0.93 | 0.89 | 0.90 | 0.90 | 0.93 | 0.93 | 0.98 | 1.03 | 0.90        |
| U1-Southeast | 1.07 | 1.05 | 1.02 | 0.97 | 0.95 | 0.90 | 0.89 | 0.88 | 0.92 | 0.94 | 0.98 | 1.01 | 0.97        |
| U1-West      | 1.00 | 0.96 | 0.94 | 0.92 | 0.93 | 0.92 | 0.95 | 0.93 | 0.92 | 0.92 | 0.97 | 0.97 | 0.89        |
| U1-Worcester | 1.10 | 1.10 | 1.04 | 0.97 | 0.95 | 0.94 | 0.93 | 0.91 | 0.95 | 0.96 | 0.98 | 1.04 | 0.89        |
| U2           | 1.01 | 1.03 | 0.98 | 0.95 | 0.93 | 0.91 | 0.94 | 0.92 | 0.95 | 0.95 | 0.95 | 0.97 | 0.98        |
| U3           | 1.03 | 1.05 | 1.01 | 0.95 | 0.92 | 0.90 | 0.94 | 0.93 | 0.93 | 0.92 | 0.96 | 0.99 | 0.96        |
| U4-U7        | 1.06 | 1.05 | 1.02 | 0.96 | 0.92 | 0.89 | 0.95 | 0.95 | 0.92 | 0.92 | 0.98 | 1.03 | 0.98        |
| Rec - East   | 1.18 | 1.17 | 1.08 | 1.03 | 0.95 | 0.87 | 0.83 | 0.83 | 0.97 | 0.98 | 1.19 | 1.19 | 0.98        |
| Rec - West   | 1.30 | 1.23 | 1.32 | 1.18 | 0.95 | 0.82 | 0.70 | 0.69 | 0.97 | 0.96 | 1.16 | 1.15 | 0.95        |

Round off:

0-999 = 10

>1000 = 100

U = Urban

R = Rural

1 - Interstate

2 - Freeway and Expressway

- 3 Other Principal Arterial
- 4 Minor Arterial
- 5 Major Collector
- 6 Minor Collector
- 7 Local Road and Street

**Recreational - East Group** - Cape Cod (all towns) including the town of Plymouth south of Route 3A (stations

7014,7079,7080,7090,7091,7092,7093,7094,7095,7096,7097,7108 and 7178), Martha's Vineyard and Nantucket.

Recreational - West Group - Continuous Stations 2 and 189 including stations

1066,1067,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1113,1114, 1116,2196,2197 and 2198.

Appendix C: Crash Rate Worksheets





### **INTERSECTION CRASH RATE WORKSHEET, 2017-2019**

| CITY/TOWN : Millbury             |                |                   |                        | COUNT DA        | TE:                            |                      |  |  |  |  |
|----------------------------------|----------------|-------------------|------------------------|-----------------|--------------------------------|----------------------|--|--|--|--|
| DISTRICT : 3                     | UNSIGN         | ALIZED :          | X                      | SIGNA           | LIZED :                        |                      |  |  |  |  |
|                                  |                | ~ IN <sup>-</sup> | TERSECTION             | I DATA ~        |                                |                      |  |  |  |  |
| MAJOR STREET :                   | West Main S    | treet             |                        |                 |                                |                      |  |  |  |  |
| MINOR STREET(S) :                | Burbank Street |                   |                        |                 |                                |                      |  |  |  |  |
|                                  | High Street    |                   |                        |                 |                                |                      |  |  |  |  |
|                                  |                |                   |                        |                 |                                |                      |  |  |  |  |
|                                  |                |                   |                        |                 |                                |                      |  |  |  |  |
|                                  |                |                   | <u> </u>               |                 |                                |                      |  |  |  |  |
| INTERSECTION                     | North          |                   | STREET                 |                 |                                |                      |  |  |  |  |
| DIAGRAM                          |                |                   |                        |                 |                                |                      |  |  |  |  |
|                                  |                |                   |                        |                 |                                |                      |  |  |  |  |
|                                  |                |                   | W NAM                  | BURBA<br>STREET | Nu                             |                      |  |  |  |  |
|                                  |                |                   | A LES                  | ·cE7            | M.                             |                      |  |  |  |  |
|                                  |                |                   |                        |                 |                                |                      |  |  |  |  |
| APPROACH :                       | 1              | 2                 | 3                      | 4               | 5                              | Total Peak<br>Hourly |  |  |  |  |
| DIRECTION :                      | EB             | WB                | NB                     | SB              |                                | Approach<br>Volume   |  |  |  |  |
| PEAK HOURLY<br>VOLUMES (AM/PM) : |                |                   | 220                    | 404             |                                | 624                  |  |  |  |  |
| "K" FACTOR :                     | 0.08           | INTERS            | ECTION ADT<br>APPROACH |                 | AL DAILY                       | 7,800                |  |  |  |  |
| TOTAL # OF CRASHES :             | 9              | # OF<br>YEARS :   | 3                      | CRASHES         | GE # OF<br>PER YEAR (<br>.):   | 3.00                 |  |  |  |  |
| CRASH RATE CALCU                 | ILATION :      | 1.05              | RATE =                 |                 | ( A * 1,000,000<br>( V * 365 ) | )                    |  |  |  |  |
| Comments : <u>PM Peak</u>        | used           |                   |                        |                 |                                |                      |  |  |  |  |
| Project Title & Date:            |                | est Main Stre     | eet 04/22/202          | 20              |                                |                      |  |  |  |  |

Appendix D: Detailed Trip Generation



|        |           | Exi            | sting Tr                                     | ips         | Future Trips        |                                                           |                    |                |                                             |                 |                     |                                                       |                          |
|--------|-----------|----------------|----------------------------------------------|-------------|---------------------|-----------------------------------------------------------|--------------------|----------------|---------------------------------------------|-----------------|---------------------|-------------------------------------------------------|--------------------------|
| Period | Direction | Maı<br>(35     | LUC 140<br>nufactur<br>5,000 sq<br>hicle tri | ring<br>ft) | Multifa<br>(I<br>(2 | LUC 221<br>amily Ho<br>Mid-Rise<br>202 Unita<br>erson tri | ousing<br>e)<br>s) | Genera<br>(7,  | LUC 710<br>al Office<br>500 Sq.<br>rson tri | e Bldg.<br>ft.) | High-<br>Down<br>(2 | LUC 932<br>Furnove<br>) Resta<br>,400 sq<br>hicle tri | er (Sit-<br>urant<br>ft) |
|        |           | Total<br>Trips | Split                                        | Trips       | Total<br>Trips      | Split                                                     | Trips              | Total<br>Trips | Split                                       | Trips           | Total<br>Trips      | Split                                                 | Trips                    |
| AM     | Enter     | 28             | 26%                                          | 20          | 63                  | 27%                                                       | 17                 | 11             | 85%                                         | 10              | 34                  | 56%                                                   | 19                       |
|        | Exit      | 20             | 74%                                          | 8           | 03                  | 73%                                                       | 46                 |                | 115%                                        | 1               | 54                  | 44%                                                   | 15                       |
| PM     | Enter     | 28             | 37%                                          | 12          | 99                  | 61%                                                       | 60                 | 12             | 20%                                         | 2               | 42                  | 52%                                                   | 22                       |
| 1 101  | Exit      | 20             | 63%                                          | 16          | 33                  | 39%                                                       | 39                 | 12             | 80%                                         | 10              | 72                  | 48%                                                   | 20                       |

### Trip Generation from ITE Method by LUC

Notes:

LUC = Land Use Code

Average rates were used to estimate trip generation.

Peak-hour trip generation based on peak hours of the generator due to limited data availability for peak hours of adjacent street traffic.

# **Appendix B Construction Pollution Prevention Plan**

### **Erosion and Sedimentation Control Measures**

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor and do not constitute or replace the final Stormwater Pollution Prevention Plan that must be fully implemented by the Contractor and owner in Compliance with EPA NPDES regulations.

### **Straw Wattles**

Straw wattles will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site.

### Silt Fencing

In areas where high runoff velocities or high sediment loads are expected, straw wattles may be backed up with silt fencing. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The silt fences and straw wattle barrier will be replaced as determined by periodic field inspections.

### **Catch Basin Protection**

Newly constructed and existing catch basins will be protected with straw bale barriers (where appropriate) or silt sacks throughout construction.

### **Gravel and Construction Entrance/Exit**

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

### **Diversion Channels**

Diversion channels will be used to collect runoff from construction areas and discharge to either sedimentation basins or protected catch basin inlets.

### **Temporary Sediment Basins**

Temporary sediment basins will be designed either as excavations or bermed stormwater detention structures (depending on grading) that will retain runoff for a sufficient period of time to allow suspended soil particles to settle out prior to discharge. These temporary basins will be located based on construction needs as determined by the contractor and outlet devices will be designed to control velocity and sediment. Points of discharge from sediment basins will be stabilized to minimize erosion.

### **Vegetative Slope Stabilization**

Stabilization of open soil surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slopes of 3:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent vegetative cover may be established by hydro-seeding or sodding. A suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water.

### Maintenance

□ The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.

□ The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.

 $\Box$  Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.

□ Damaged or deteriorated items will be repaired immediately after identification.

 $\hfill\square$  The underside of straw wattles should be kept in close contact with the earth and reset as necessary.

 $\hfill\square$  Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.

□ Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be re- graded and stabilized as necessary.

### Construction Best Management Practices – Maintenance/ Evaluation Checklist

| Best Management Practice       | Inspection<br>Frequency         | Date<br>Inspected | Inspector | Minimum Maintenance and Key<br>Items to Check                                                                                                                                                                                                                                                                              | Cleaning/Repair Needed<br>☐ yes | Date of<br>Cleaning/Repair | Performed by: |
|--------------------------------|---------------------------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|---------------|
| Straw Wattles/Silt Fencing     | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Inspect for accumulated sediment behind<br/>straw wattles/silt fencing and remove as<br/>needed.</li> <li>Separation of straw wattles with the earth<br/>and each other. Make adjustments to<br/>eliminate separations.</li> <li>Damaged or broken straw wattles/silt<br/>fence. Replace as necessary.</li> </ul> | ☐ yes ☐ no                      |                            |               |
| Gravel Construction Entrance   | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Accumulated sediment</li> <li>Remove sediment that is spilled, dropped, washed or tracked onto pavements outside limit of work.</li> </ul>                                                                                                                                                                        | ☐ yes ☐ no                      |                            |               |
| Catch Basin Protection         | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Accumulated sediment within silt sacks.<br/>Remove sediment as necessary.</li> <li>Rips or torn silt sacks. Replace damaged silt sacks.</li> </ul>                                                                                                                                                                | ☐ yes ☐ no                      |                            |               |
| Diversion Channels             | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Cracking,</li> <li>Erosion,</li> <li>Leakage in the embankments</li> <li>Repair diversion channels as necessary to prevent downstream erosion and sedimentation.</li> </ul>                                                                                                                                       | ☐ yes ☐ no                      |                            |               |
| Temporary Sedimentation Basins | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Cracking,</li> <li>Erosion,</li> <li>Leakage in the embankments</li> <li>Accumulation of sediment.</li> <li>Remove sediment and make repairs as necessary to ensure proper function of sediment basin.</li> </ul>                                                                                                 | ☐ yes ☐ no                      |                            |               |
| Vegetated Slope Stabilization  | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Cracking,</li> <li>Erosion</li> <li>Repair/reaplace as necessary to ensure proper function of slope stabilization and to prevent downstream erosion and sedimentation.</li> </ul>                                                                                                                                 | ☐ yes ☐ no                      |                            |               |

Stormwater Control Manager \_\_\_\_\_

# **Appendix C Permanent Pollution Prevention Plan**

**Appendix D Potable Water Engineering Report** 

# **Appendix E Sanitary Sewer Engineering Report**

**Appendix F Stormwater Report** 

# **Stormwater Report**

# FOR Singletary Arms

Millbury, Massachusetts



DATE PREPARED July 22, 2020

PREPARED BY Todd Chandler, P.E. 301 W. Pacific Suite B Branson, MO 65616

### **TABLE OF CONTENTS**

| I.   | INTRODUCTION                      | 1 |
|------|-----------------------------------|---|
| II.  | DRAINAGE-EXISTING SITE CONDITIONS | 1 |
| III. | DRAINAGE-PROPOSED SITE CONDITIONS | 2 |
| IV.  | DRAINAGE ANALYSIS METHODOLOGY     | 2 |
| V.   | DRAINAGE ANALYSIS RESULTS         | 3 |
| VI.  | CONCLUSIONS                       | 3 |
| VII. | STORMWATER MANAGEMENT STANDARDS   | 3 |

- APPENDIX 1 USGS Map
- APPENDIX 2 FIRM Map
- APPENDIX 3 Pre- and Post-Development Watershed Maps
- APPENDIX 4 Stormwater Attenuation Calculations & Rainfall Data
- APPENDIX 5 Pipe Sizing
- APPENDIX 6 Groundwater Recharge Volume
- APPENDIX 7 Water Quality Calculations
- APPENDIX 8 Long Term Stormwater Operation & Maintenance Plan
- APPENDIX 9 Construction Period Pollution Prevention Plan
- APPENDIX 10 MADEP Stormwater Checklist
- APPENDIX 11 NRCS Soil Map Geotechnical Report Test-Pit Data

### I. INTRODUCTION

The following report provides an analysis of the stormwater drainage conditions that will result from the re-development of Steelcraft Building located at 115 West Main Street in the City of Millbury, Massachusetts. The subject property ("the Site") contains approximately 12.5 acres of land, is situated on the southwest side of the intersection of West Main Street and Burbank Street. The Steelcraft Building is an existing three-story warehouse/manufacturing facility and associated infrastructure. The four acres of wooded upland immediately adjacent and south of the Steelcraft Building will be developed into two apartment buildings and associated infrastructure and surface parking. Up through the 1960's, the wooded upland was occupied by tenement housing, which were part of the Steelcraft complex. Later, this parcel was home to a large single-family residence which was destroyed by fire around 2003.

The proposed project will consist of redeveloping the Steelcraft building into a mixed-use property including 10,000 square feet of commercial space, 53 apartment units, and resident amenities. The two apartment buildings to be constructed on the former tenement site of the wooded upland will include paved parking, pervious paver parking, pedestrian access, stormwater management system and utilities.

This report includes an analysis of the pre- and post-development drainage characteristics including off site contribution, building, parking, and landscaped areas. The report provides a detailed analysis of the proposed stormwater facilities and best management practices (BMPs) that will control both stormwater outflows leaving the site.

This report addresses a comparative analysis of the pre- and post-development site stormwater runoff conditions with the following primary design constraints being:

- 1. The Massachusetts Department of Environmental Protection Agency's Stormwater Management Standards; and
- 2. The City of Millbury Stormwaater Ordinance.

### **II. DRAINAGE – EXISTING SITE CONDITIONS**

The Steelcraft Building is situated on approximately 1.5 acres of ground which includes off-street parking, sidewalk, and utilities. In addition to the Steelcraft Building, the site contributory drainage area contains 7.42 acres of wooded upland and 3,000 square feet of rooftop which drains to the north toward Singletary Brook. The drainage areas are further defined in the "Pre-Development Drainage Area Map" which is included in Appendix 3 of this report.

The contributory drainage area is divided into three sub-areas:

| DA - Pond 1- Offsite | 3.01 Acres |
|----------------------|------------|
| DA - Pond 1 - Onsite | 2.09 Acres |
| DA – Pond 2 – Onsite | 2.32 Acres |

Of this drainage area, 2.67 acres drains toward Burbank Street, and 4.74 acres drains toward Singletary Brook upstream of the Steelcraft Building. The Steelcraft building is located in close proximity to both West Main Street and Burbank Street and graded in manner that stormwater discharges directly into existing storm inlets located along Burbank Street.

Based on our review of the Natural Resources Conservation Service (NRCS) WSS online soil databases, the soils at the subject site are classified into five soil types:

420 B - Canton Fine Sandy Loam 3 - 8% slope

307 E – Paxton Fine Sandy Loam 15 – 35% slope

307 C - Paxton Fine Sandy Loam 8 - 15% slope

 $305\ C-Paxton$  Fine Sandy Loam 8-15% slope

305 B – Paxton Fine Sandy Loam 3 – 8% slope

Subsurface soils information is provided in Boring Logs prepared by Soil X Corp, dated February 21, 2020, and included in Appendix 11 of this report.

### **III. DRAINAGE- PROPOSED SITE CONDITIONS**

The proposed project will consist of renovating the existing Steelcraft Building into apartment units,  $10,000\pm$  square foot (SF) commercial/retail and  $2,400\pm$  SF restaurant space. The wooded upland will be developed into two apartment buildings, parking, utilities, landscape improvements, and stormwater management improvements. Refer to the Site Development Plans prepared by Chandler Engineering, dated April 20, 2020.

The goal of the stormwater management system design is to maintain existing site drainage patterns, mitigate peak post development rates, and protect water quality of receiving waters and groundwater in accordance with MassDEP's Stormwater Management Standards and the City of Millbury's Requirements.

Stormwater quality improvements proposed for the site include precast concrete catch basins, pervious pavers with extended detention area, and a subsurface detention system which will achieve the desired total suspended solids (TSS) removal required by both the DEP's and the City of Millbury's Stormwater Management Standards. Given the existing site topography, site geometry, and grading constraints, there is very little land area available to utilize low impact design practices. However, approximately six acres of property will remain undisturbed. By using an extended subsurface detention system with a volume 2.5 times greater than the one-inch rainfall volume, infiltration and pollutant removal have been achieved to the maximum extent possible.

The post-development condition consists of three (3) drainage areas DA - Pond 1 - Offsite, DA - Pond 1 - Onsite, and DA Pond 2 - Onsite. Drainage areas DA - Pond 1 - Offsite and DA - Pond 1 - Onsite discharges into Singletary Brook upstream of the Steelcraft Building. Drainage area DA Pond 2 - Onsite discharges into an existing inlet located along Burbank Street at the southeast corner of the Steelcraft Building. Refer to the "Post-Development Drainage Area Map" which is included in Appendix 3 of this report.

The onsite drainage areas for both Pond 1 and Pond 2 are further divided into inlet drainage areas. Refer to the "Post-Development Drainage Area Map (Inlets)" in Appendix 3 of this report. For TSS pretreatment, surface runoff captured by the pervious pavement, at each subsurface basin, flows via extended detention and perforated pipe to a precast concrete catch basin inlet immediately upstream of each subsurface detention basin. This basin then discharges into a subsurface chamber system for attenuation of peak runoff rates. Roof drainage and surface runoff collected by concrete catch basins immediately upstream of each detention basin for additional pretreatment prior to discharge.

Under proposed conditions, the stormwater runoff rates and volumes from the proposed development are attenuated to the pre-development condition for all storms including the 100-year storm event at both

Pond 1 and Pond 2.

Both subsurface basins have been sized to provide adequate storage to meet the City of Millbury requirements. Calculations have been provided in Appendix 5 of this report.

Pipe sizing calculations have also been included in Appendix 5. The calculations demonstrate that the drainage system has sufficient capacity for the 25-year storm event.

### IV. DRAINAGE ANALYSIS METHODOLGY

The methodology utilized to design the proposed stormwater management system to comply with the City of Millbury and State requirements/guidelines is based on the Rational method. In addition, times of concentration were generated from the SCS TR 55 Urban Hydrology for small watersheds method. Runoff coefficients for the existing and proposed development conditions were developed using widely accepted runoff coefficients. The rainfall rates used were based on the TP-40 rainfall amounts for Essex County.

### V. DRAINAGE ANALYSIS RESULTS

The tables below include the pre-development runoff rate and the post-development discharge rates and associated chamber system volume for the 2-, 10-, 25, 50 - and 100-year storm events. For both chamber systems, the post-development discharge rate for each storm event is less than the pre-developed discharge rate.

Project Area in Asphalt Pavement – 52,708 sf Project Area in Concrete Sidewalk – 12,367 sf Project Area in Proposed Roof – 41,902 sf

Project Area in Pervious Pavers – 24,158 sf Project Area in Chamber System – 3196 sf, 15,191 cf Volume in Extended Detention – (24158 – 3196) x 1' x 0.35 = 7,336 cf

Table 1 - Pond-1 (Drainage Areas DA - Pond 1 - Offsite, DA - Pond 1 - Onsite)

#### PRE-DEVELOPMENT ALLOWABLE RELEASE RATES & ACTUAL ROUTED RELEASE RATES

| *  | - | FROM | PRE-DEV. HYDROGRAPH |
|----|---|------|---------------------|
| ** | - | FROM | RATING TABLE        |

| STORM EVENT | *PRE-DEVELOPMENT<br>RELEASE RATE (CFS) | **ROUTED<br>RELEASE RATE (CFS) | ELEVATION<br>IN FEET | VOLUME<br>PROVIDED |
|-------------|----------------------------------------|--------------------------------|----------------------|--------------------|
| 2           | 2.75                                   | 2.03                           | 514.16               | 6260 CUFT          |
| 10          | 3.33                                   | 2.68                           | 514.46               | 7058 CUFT          |
| 25          | 4.44                                   | 3.46                           | 515.15               | 8903 CUFT          |
| 50          | 5.16                                   | 3.91                           | 515.64               | 10190 CUFT         |
| 100         | 5.56                                   | 4.14                           | 515.90               | 10903 CUFT         |

Table 2 – Pond-2 (DA Pond 2 – Onsite)

|             | T ALLOWABLE RELEASE RATES<br>UAL ROUTED RELEASE RATES |                                | * = FROM PRE-DEV. HYDROGRAPH<br>** = FROM RATING TABLE |                    |  |  |  |
|-------------|-------------------------------------------------------|--------------------------------|--------------------------------------------------------|--------------------|--|--|--|
| STORM EVENT | *PRE-DEVELOPMENT<br>RELEASE RATE (CFS)                | **ROUTED<br>RELEASE RATE (CFS) | ELEVATION<br>IN FEET                                   | VOLUME<br>PROVIDED |  |  |  |
| 2           | 1.79                                                  | 1.55                           | 485.69                                                 | 2473 CUFT          |  |  |  |
| 10          | 2.13                                                  | 1.78                           | 485.96                                                 | 2752 CUFT          |  |  |  |
| 25          | 2.78                                                  | 2.29                           | 486.69                                                 | 3508 CUFT          |  |  |  |
| 50          | 3.20                                                  | 2.49                           | 487.04                                                 | 3867 CUFT          |  |  |  |
| 100         | 3.44                                                  | 2.72                           | 487.44                                                 | 4288 CUFT          |  |  |  |

### **VI. CONCLUSIONS**

The proposed stormwater management system illustrated on the enclosed drawings prepared by Chandler Engineering, dated April 20, 2020, results in a decrease in post-development peak stormwater runoff rates for all storm events associated with the proposed development. In addition, best management practices being implemented as part of the proposed stormwater management system design will result in the required 80% TSS removal for the increase in impervious area from the pre-

developed condition. The project has been designed to manage stormwater onsite to the maximum extent practicable, and it also complies with the requirements of the Massachusetts Department of Environmental Protection Stormwater Standards and the City of Millbury Requirements.

### VII. STORMWATER MANAGEMENT STANDARDS

As outlined below, the proposed drainage system was designed in accordance with the Massachusetts Stormwater Management Policy to the maximum extent practicable.

# <u>Standard #1:</u> No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The proposed development has been designed so that all pavement areas from the proposed development are collected by the stormwater management system for treatment prior to being discharged to wetlands.

# <u>Standard #2:</u> Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates.

Runoff rates for the post-development condition were calculated for the 2-, 10-, 25-, 50- and 100-year 24- hour storm events. These calculations are provided in Appendix 4 of this report. As summarized in this report, there is no increase in peak stormwater runoff rates for the storm events analyzed for the proposed development due to the implementation of a stormwater management system.

# <u>Standard #3:</u> Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance.

Given the existing ground slope only a limited portion of the site will be practicable for recharge BMPs. The project proposes an underground detention/infiltration system to mitigate peak runoff rates and volumes, and to promote groundwater recharge. The project has been designed to recharge stormwater runoff from the site to the maximum extent practicable. See Appendix 6 for calculations.

# <u>Standard #4:</u> Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS).

The proposed stormwater management system has been designed to provide at least 80% removal of TSS for the increase in impervious area compared to the pre-developed condition through the use of several BMPs, including deep sump catch basins, pervious pavement, and an extended detention basin. All water quality BMPs for this project have been sized to meet DEP standards. See Appendix 7 for calculations.

# <u>Standard #5:</u> For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

Vehicle trips onsite may trigger the threshold considering the Site a Land Use with Higher Potential Pollutant Loads, therefore the project has been designed to treat stormwater discharges from the Site to the maximum extent practicable in accordance with the Massachusetts Stormwater Handbook.

### Standard #6: Stormwater discharges within the Zone II or Interim Wellhead Protection Area of

a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

The site is not located within a Zone II, Interim Wellhead Protection Area, or near to any other critical area. The site is located adjacent to wetland resource areas and proposes to achieve a minimum of 80% TSS removal under post-development conditions for all stormwater leaving the site. In addition, all water quality BMPs for this project have been sized to meet DEP regulations.

# <u>Standard #7:</u> A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable.

The proposed project is not a redevelopment and has been designed in accordance with the Massachusetts Stormwater Management regulations.

<u>Standard #8:</u> A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

An Erosion and Sediment control plan has been prepared as part of the enclosed drawings prepared by Chandler Engineering. This includes implementation of a perimeter erosion control barrier along with a construction entrance, protection for catch basins inlets and protection around temporary material stock pile areas. The proposed area of disturbance is greater than one acre, therefore the project shall require filing of a Notice of Intent with EPA and shall implement a Stormwater Pollution Prevention Plan (SWPPP) during construction. The contractor will be required to maintain erosion control measures during construction and prevent erosion or sediment discharges to downstream areas.

# <u>Standard #9:</u> A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A Long Term Operation and Maintenance Plan for the proposed BMP's has been developed for this project and is included within Appendix 8 of this report. The O&M Plan outlines procedures and time tables for the long term operation and maintenance of the proposed stormwater management system, as well as includes a list of parties responsible and an estimated budget associated with inspections and maintenance.

### Standard #10: All illicit discharges to the stormwater management system are prohibited

No illicit discharges will be created as part of the site construction for the proposed project.

# APPENDIX 1 USGS Map

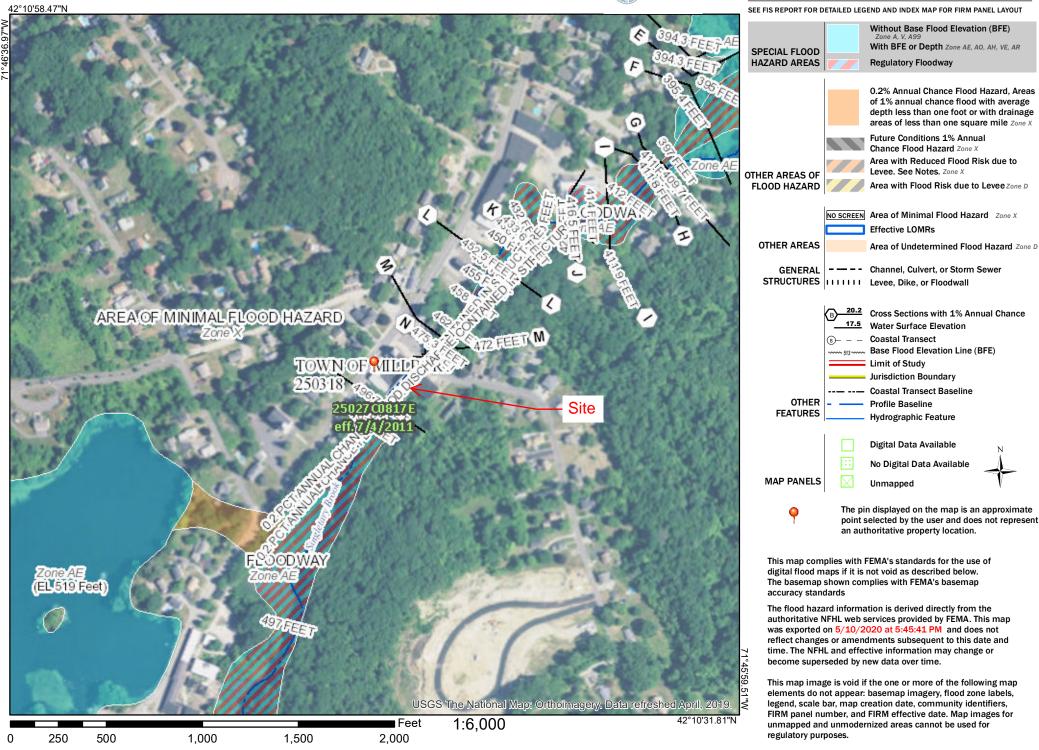


### **Location Map**

4/12/2020 10:57:01 AM

Scale: 1"=1505' Scale is approximate A STATE OF THE

RPORATE


The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

# APPENDIX 2 FIRM Map

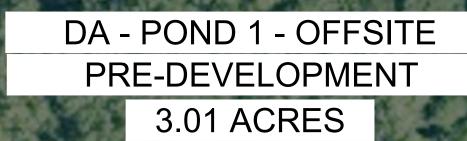
# National Flood Hazard Layer FIRMette

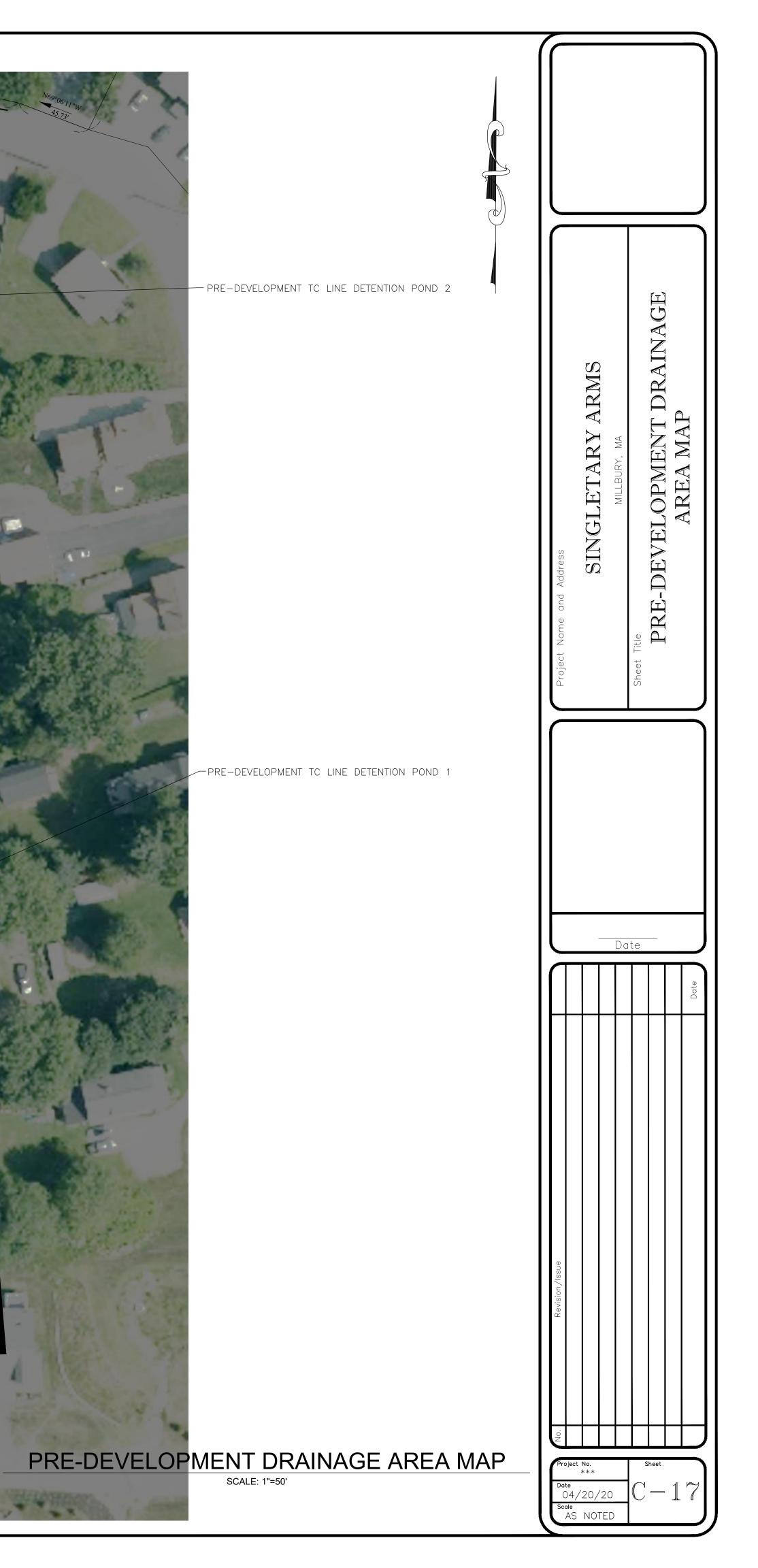


### Legend



## **APPENDIX 3**

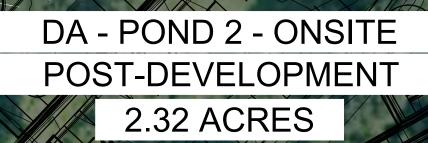

# **Pre- and Post-Development Watershed Maps**

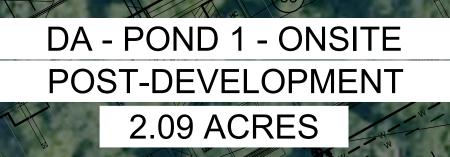

# LEGEND

|                    | RIGHT OF WAY LINE            |
|--------------------|------------------------------|
|                    | EXISTING WATER LINE          |
|                    | EXISTING SANITARY SEWER LINE |
|                    | EXISTING STORM SEWER LINE    |
|                    | - WATER LINE                 |
|                    | - SANITARY SEWER LINE        |
|                    | - STORM SEWER LINE           |
| 1234               | EXISTING CONTOURS MAJOR      |
| 1234               | EXISTING CONTOURS MINOR      |
| 1234               | PROPOSED CONTOURS MAJOR      |
| 1234               | - PROPOSED CONTOURS MINOR    |
| S                  | SANITARY SEWER MANHOLE       |
| $\bigcirc$         | STORM SEWER MANHOLE          |
| WM                 | WATER METER                  |
| WV<br>M            | WATER VALVE                  |
| Д                  | FIRE HYDRANT                 |
| $\mathbf{\forall}$ | THRUST BLOCK                 |
|                    |                              |
|                    |                              |

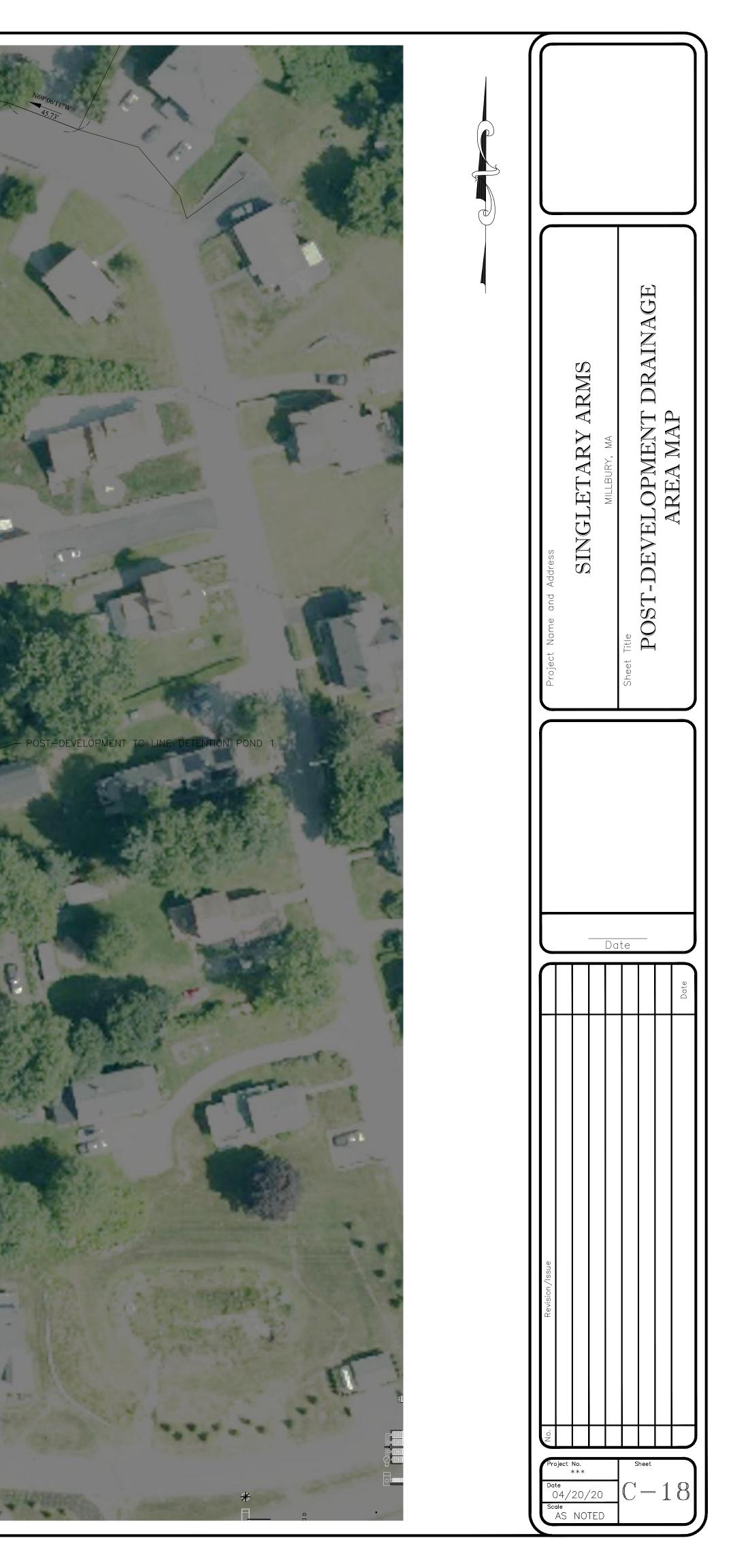
urbank Street v: Douglas Backman Deed Book 35984, Pg 377 orded 2005-03-29 o See: Plan Bk 114, Plan 81 Wm-Thompson, 1940 DA - POND 2 - ONSITE PRE-DEVELOPMENT 2.32 ACRES

DA - POND 1 - ONSITE PRE-DEVELOPMENT 2.09 ACRES




# LEGEND


|                 | RIGHT OF WAY LINE            |
|-----------------|------------------------------|
|                 | EXISTING WATER LINE          |
|                 | EXISTING SANITARY SEWER LINE |
|                 | EXISTING STORM SEWER LINE    |
|                 | - WATER LINE                 |
|                 | - SANITARY SEWER LINE        |
|                 | STORM SEWER LINE             |
| 1234            | EXISTING CONTOURS MAJOR      |
| 1234            | EXISTING CONTOURS MINOR      |
| 1234            | PROPOSED CONTOURS MAJOR      |
| 1234            | - PROPOSED CONTOURS MINOR    |
| S               | SANITARY SEWER MANHOLE       |
| $\bigcirc$      | STORM SEWER MANHOLE          |
| WM              | WATER METER                  |
| WV<br>M         | WATER VALVE                  |
|                 | FIRE HYDRANT                 |
| $\mathbf{\Psi}$ | THRUST BLOCK                 |
|                 |                              |
|                 |                              |

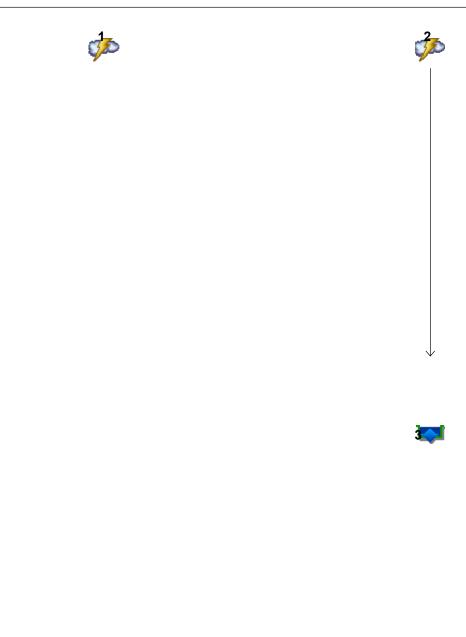
urbank Street v: Douglas Backman Deed Book 35984, Pg 377 orded 2005-03-29 D See: Plan Bk 114, Plan 81 Wm-Thompson, 1940





DA - POND 1 - OFFSITE POST-DEVELOPMENT 3.01 ACRES




# **APPENDIX 4**

# **Stormwater Attenuation Calculations & Rainfall Data**

# POND 1

### Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020



# Legend Hyd. Origin Description 1 Rational Pre-Development 2 Rational Post-Development 3 Reservoir Routed Detention Pond

# Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

| lyd.<br>No. | Hydrograph<br>type | Inflow<br>hyd(s) |      | Peak Outflow (cfs) |      |      |       |       |       | 1      | Hydrograph<br>Description |
|-------------|--------------------|------------------|------|--------------------|------|------|-------|-------|-------|--------|---------------------------|
|             | (origin)           |                  | 1-yr | 2-yr               | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |                           |
| 1           | Rational           |                  |      | 2.750              |      |      | 3.325 | 4.439 | 5.158 | 5.553  | Pre-Development           |
| 2           | Rational           |                  |      | 6.321              |      |      | 7.623 | 10.11 | 11.73 | 12.60  | Post-Development          |
| 3           | Reservoir          | 2                |      | 2.034              |      |      | 2.678 | 3.458 | 3.912 | 4.142  | Routed Detention Pond     |
|             |                    |                  |      |                    |      |      |       |       |       |        |                           |
|             |                    |                  |      |                    |      |      |       |       |       |        |                           |
|             |                    |                  |      |                    |      |      |       |       |       |        |                           |
|             |                    |                  |      |                    |      |      |       |       |       |        |                           |
|             |                    |                  |      |                    |      |      |       |       |       |        |                           |
|             |                    |                  |      |                    |      |      |       |       |       |        |                           |

# Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

| Hyd.<br>No.                  | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|------------------------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1                            | Rational                       | 2.750                 | 1                         | 24                       | 3,960                    |                  |                              |                               | Pre-Development           |
| 2                            | Rational                       | 6.321                 | 1                         | 20                       | 7,585                    |                  |                              |                               | Post-Development          |
| 3                            | Reservoir                      | 2.034                 | 1                         | 34                       | 4,829                    | 2                | 514.16                       | 6,260                         | Routed Detention Pond     |
|                              |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|                              |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Millburry Pond 1 - small.gpw |                                |                       |                           | Return                   | Return Period: 2 Year    |                  |                              | Monday, 04 / 13 / 2020        |                           |

# Hydrograph Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development

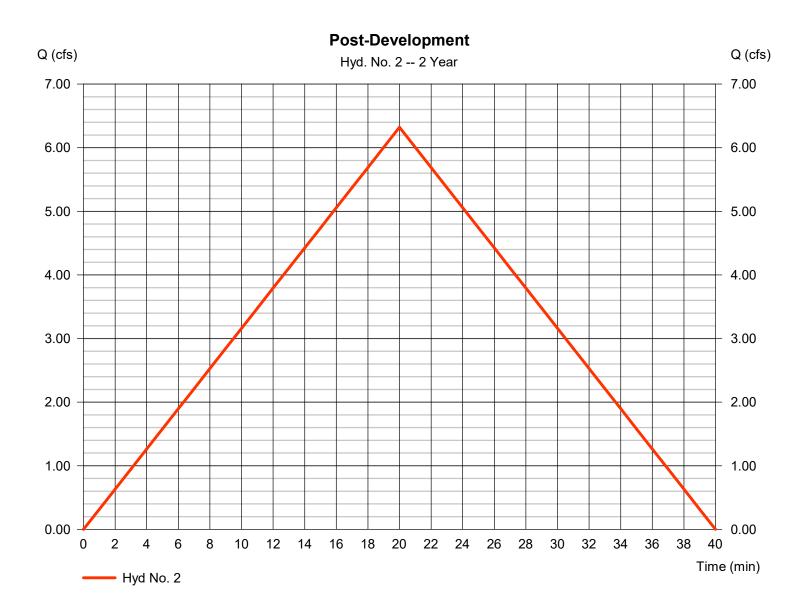
| S  |
|----|
|    |
| ft |
|    |
| in |
|    |
| J  |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.25)] / 5.100



4

# Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 2

Post-Development

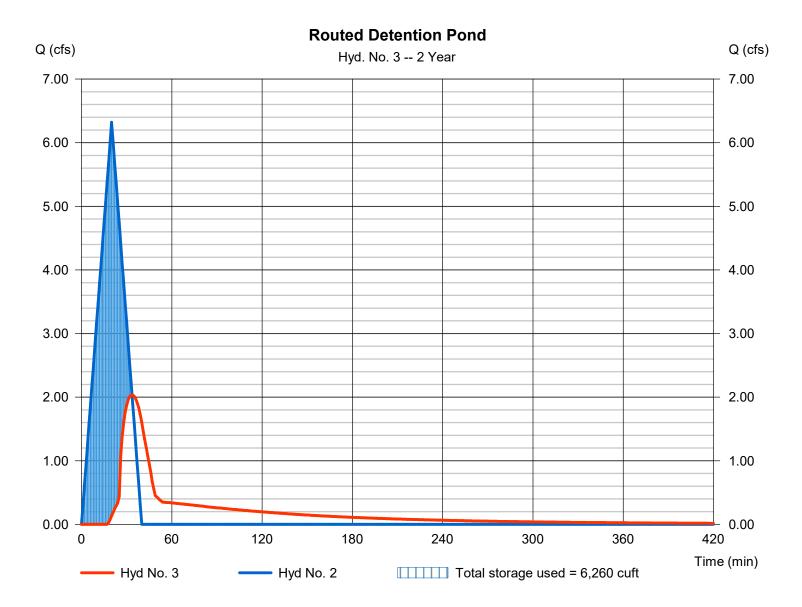
| Hydrograph type | = Rational           | Peak discharge    | = 6.321 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 2 yrs              | Time to peak      | = 20 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 7,585 cuft |
| Drainage area   | = 5.100 ac           | Runoff coeff.     | = 0.52*      |
| Intensity       | = 2.384 in/hr        | Tc by User        | = 20.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.90)] / 5.100



5

# Hydrograph Report


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

**Routed Detention Pond** 

| Hydrograph type | = Reservoir            | Peak discharge | = 2.034 cfs  |
|-----------------|------------------------|----------------|--------------|
| Storm frequency | = 2 yrs                | Time to peak   | = 34 min     |
| Time interval   | = 1 min                | Hyd. volume    | = 4,829 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 514.16 ft  |
| Reservoir name  | = UnderGround Pond 1   | Max. Storage   | = 6,260 cuft |

Storage Indication method used.



6

### **Pond Report**

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

#### Pond No. 1 - UnderGround Pond 1

#### Pond Data

**UG Chambers -**Invert elev. = 513.00 ft, Rise x Span =  $0.87 \times 1.41$  ft, Barrel Len = 7.12 ft, No. Barrels = 130, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 512.00 ft, Width = 7.17 ft, Height = 4.00 ft, Voids = 40.00\%

#### Stage / Storage Table

| Stage (ft) | Elevation (ft) | Contour area (sqft) | Incr. Storage (cuft) | Total storage (cuft) |
|------------|----------------|---------------------|----------------------|----------------------|
| 0.00       | 512.00         | n/a                 | 0                    | 0                    |
| 0.40       | 512.40         | n/a                 | 1,062                | 1,062                |
| 0.80       | 512.80         | n/a                 | 1,062                | 2,124                |
| 1.20       | 513.20         | n/a                 | 1,217                | 3,341                |
| 1.60       | 513.60         | n/a                 | 1,336                | 4,678                |
| 2.00       | 514.00         | n/a                 | 1,168                | 5,845                |
| 2.40       | 514.40         | n/a                 | 1,062                | 6,908                |
| 2.80       | 514.80         | n/a                 | 1,062                | 7,970                |
| 3.20       | 515.20         | n/a                 | 1,062                | 9,032                |
| 3.60       | 515.60         | n/a                 | 1,062                | 10,094               |
| 4.00       | 516.00         | n/a                 | 1,062                | 11,156               |

#### **Culvert / Orifice Structures**

#### **Weir Structures**

|                 | [A]    | [B]    | [C]  | [PrfRsr] |                | [A]         | [B]        | [C]  | [D]  |
|-----------------|--------|--------|------|----------|----------------|-------------|------------|------|------|
| Rise (in)       | = 0.00 | 10.00  | 0.00 | 0.00     | Crest Len (ft) | = 0.00      | 0.00       | 0.00 | 0.00 |
| Span (in)       | = 0.00 | 10.00  | 0.00 | 0.00     | Crest El. (ft) | = 0.00      | 0.00       | 0.00 | 0.00 |
| No. Barrels     | = 0    | 1      | 0    | 0        | Weir Coeff.    | = 3.33      | 3.33       | 3.33 | 3.33 |
| Invert El. (ft) | = 0.00 | 513.00 | 0.00 | 0.00     | Weir Type      | =           |            |      |      |
| Length (ft)     | = 0.00 | 1.00   | 0.00 | 0.00     | Multi-Stage    | = No        | No         | No   | No   |
| Slope (%)       | = 0.00 | 1.00   | 0.00 | n/a      |                |             |            |      |      |
| N-Value         | = .013 | .013   | .013 | n/a      |                |             |            |      |      |
| Orifice Coeff.  | = 0.60 | 0.60   | 0.60 | 0.60     | Exfil.(in/hr)  | = 0.000 (by | /Wet area) | 1    |      |
| Multi-Stage     | = n/a  | No     | No   | No       | TW Elev. (ft)  | = 0.00      |            |      |      |

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

| etage, | eterage / I | sieenange . | alore |         |       |        |      |      |      |      |          |      |        |
|--------|-------------|-------------|-------|---------|-------|--------|------|------|------|------|----------|------|--------|
| Stage  | Storage     | Elevation   | Clv A | Clv B   | Clv C | PrfRsr | Wr A | Wr B | Wr C | Wr D | Exfil    | User | Total  |
| ft     | cuft        | ft          | cfs   | cfs     | cfs   | cfs    | cfs  | cfs  | cfs  | cfs  | cfs      | cfs  | cfs    |
| 0.00   | 0           | 512.00      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.04   | 106         | 512.04      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.08   | 212         | 512.08      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.12   | 319         | 512.12      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.16   | 425         | 512.12      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.20   | 531         | 512.20      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.20   | 637         | 512.20      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.24   | 743         | 512.24      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.20   | 850         | 512.20      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.32   | 956         | 512.32      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.30   | 1,062       | 512.30      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.40   | 1,002       | 512.40      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.44   | 1,100       | 512.44      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.46   | 1,274       | 512.40      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.52   |             |             |       |         |       |        |      |      |      |      |          |      |        |
|        | 1,487       | 512.56      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.60   | 1,593       | 512.60      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.64   | 1,699       | 512.64      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.68   | 1,806       | 512.68      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.72   | 1,912       | 512.72      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.76   | 2,018       | 512.76      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.80   | 2,124       | 512.80      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.84   | 2,246       | 512.84      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.88   | 2,368       | 512.88      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.92   | 2,489       | 512.92      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 0.96   | 2,611       | 512.96      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 1.00   | 2,733       | 513.00      |       | 0.00    |       |        |      |      |      |      |          |      | 0.000  |
| 1.04   | 2,855       | 513.04      |       | 0.01 oc |       |        |      |      |      |      |          |      | 0.005  |
| 1.08   | 2,976       | 513.08      |       | 0.02 oc |       |        |      |      |      |      |          |      | 0.016  |
| 1.12   | 3,098       | 513.12      |       | 0.03 oc |       |        |      |      |      |      |          |      | 0.030  |
| 1.16   | 3,220       | 513.16      |       | 0.05 oc |       |        |      |      |      |      |          |      | 0.046  |
| 1.20   | 3,341       | 513.20      |       | 0.06 oc |       |        |      |      |      |      |          |      | 0.064  |
| 1.24   | 3,475       | 513.24      |       | 0.08 oc |       |        |      |      |      |      |          |      | 0.084  |
|        | , -         |             |       |         |       |        |      |      |      |      | Continue |      | t nogo |

# UnderGround Pond 1 Stage / Storage / Discharge Table

| Slaye /      | Storage /       | Discharge        | lable        |                    |              |               |             |             |             |             |              |             |                |
|--------------|-----------------|------------------|--------------|--------------------|--------------|---------------|-------------|-------------|-------------|-------------|--------------|-------------|----------------|
| Stage<br>ft  | Storage<br>cuft | Elevation<br>ft  | Clv A<br>cfs | Clv B<br>cfs       | Clv C<br>cfs | PrfRsr<br>cfs | Wr A<br>cfs | Wr B<br>cfs | Wr C<br>cfs | Wr D<br>cfs | Exfil<br>cfs | User<br>cfs | Total<br>cfs   |
| 1.28         | 3,609           | 513.28           |              | 0.10 oc            |              |               |             |             |             |             |              |             | 0.104          |
| 1.32         | 3,742           | 513.32           |              | 0.12 oc            |              |               |             |             |             |             |              |             | 0.124          |
| 1.36         | 3,876           | 513.36           |              | 0.15 oc            |              |               |             |             |             |             |              |             | 0.146          |
| 1.40         | 4,010           | 513.40           |              | 0.17 oc            |              |               |             |             |             |             |              |             | 0.168          |
| 1.44         | 4,143           | 513.44           |              | 0.19 oc            |              |               |             |             |             |             |              |             | 0.189          |
| 1.48         | 4,277           | 513.48           |              | 0.21 oc            |              |               |             |             |             |             |              |             | 0.211          |
| 1.52         | 4,410           | 513.52           |              | 0.23 oc            |              |               |             |             |             |             |              |             | 0.232          |
| 1.56         | 4,544           | 513.56           |              | 0.25 oc            |              |               |             |             |             |             |              |             | 0.253          |
| 1.60         | 4,678           | 513.60           |              | 0.27 oc            |              |               |             |             |             |             |              |             | 0.273          |
| 1.64         | 4,794           | 513.64           |              | 0.29 oc            |              |               |             |             |             |             |              |             | 0.292          |
| 1.68         | 4,911           | 513.68           |              | 0.31 oc            |              |               |             |             |             |             |              |             | 0.309          |
| 1.72         | 5,028           | 513.72           |              | 0.33 oc            |              |               |             |             |             |             |              |             | 0.325          |
| 1.76         | 5,145           | 513.76           |              | 0.34 oc            |              |               |             |             |             |             |              |             | 0.339          |
| 1.80         | 5,262           | 513.80           |              | 0.35 oc            |              |               |             |             |             |             |              |             | 0.349          |
| 1.84         | 5,378           | 513.84           |              | 0.45 oc            |              |               |             |             |             |             |              |             | 0.453          |
| 1.88         | 5,495           | 513.88           |              | 0.84 oc            |              |               |             |             |             |             |              |             | 0.838          |
| 1.92         | 5,612           | 513.92           |              | 1.10 oc            |              |               |             |             |             |             |              |             | 1.096          |
| 1.96         | 5,729           | 513.96           |              | 1.30 oc            |              |               |             |             |             |             |              |             | 1.303          |
| 2.00         | 5,845           | 514.00           |              | 1.48 oc            |              |               |             |             |             |             |              |             | 1.483          |
| 2.04         | 5,952           | 514.04           |              | 1.64 oc            |              |               |             |             |             |             |              |             | 1.642          |
| 2.08         | 6,058           | 514.08           |              | 1.79 oc            |              |               |             |             |             |             |              |             | 1.787          |
| 2.12         | 6,164           | 514.12           |              | 1.92 oc            |              |               |             |             |             |             |              |             | 1.921          |
| 2.16         | 6,270           | 514.16           |              | 2.05 oc            |              |               |             |             |             |             |              |             | 2.046          |
| 2.20         | 6,377           | 514.20           |              | 2.16 oc            |              |               |             |             |             |             |              |             | 2.164          |
| 2.24         | 6,483           | 514.24           |              | 2.28 oc            |              |               |             |             |             |             |              |             | 2.276          |
| 2.28         | 6,589           | 514.28           |              | 2.38 oc            |              |               |             |             |             |             |              |             | 2.383          |
| 2.32         | 6,695           | 514.32           |              | 2.49 oc            |              |               |             |             |             |             |              |             | 2.485          |
| 2.36         | 6,801           | 514.36           |              | 2.55 ic            |              |               |             |             |             |             |              |             | 2.550          |
| 2.40         | 6,908           | 514.40           |              | 2.60 ic            |              |               |             |             |             |             |              |             | 2.604          |
| 2.44         | 7,014           | 514.44           |              | 2.66 ic            |              |               |             |             |             |             |              |             | 2.656          |
| 2.48         | 7,120           | 514.48           |              | 2.71 ic            |              |               |             |             |             |             |              |             | 2.708          |
| 2.52         | 7,226           | 514.52           |              | 2.76 ic            |              |               |             |             |             |             |              |             | 2.758          |
| 2.56         | 7,332           | 514.56           |              | 2.81 ic            |              |               |             |             |             |             |              |             | 2.808          |
| 2.60         | 7,439           | 514.60           |              | 2.86 ic            |              |               |             |             |             |             |              |             | 2.856          |
| 2.64         | 7,545           | 514.64           |              | 2.90 ic<br>2.95 ic |              |               |             |             |             |             |              |             | 2.904          |
| 2.68         | 7,651           | 514.68           |              |                    |              |               |             |             |             |             |              |             | 2.951          |
| 2.72<br>2.76 | 7,757           | 514.72<br>514.76 |              | 3.00 ic<br>3.04 ic |              |               |             |             |             |             |              |             | 2.998<br>3.043 |
| 2.76         | 7,863           | 514.76           |              | 3.04 IC<br>3.09 ic |              |               |             |             |             |             |              |             |                |
| 2.80         | 7,970<br>8,076  | 514.80           |              | 3.09 lc<br>3.13 ic |              |               |             |             |             |             |              |             | 3.088<br>3.133 |
| 2.88         |                 |                  |              |                    |              |               |             |             |             |             |              |             |                |
| 2.00         | 8,182<br>8,288  | 514.88<br>514.92 |              | 3.18 ic<br>3.22 ic |              |               |             |             |             |             |              |             | 3.176<br>3.219 |
| 2.92         | 8,394           | 514.92           |              | 3.22 ic<br>3.26 ic |              |               |             |             |             |             |              |             | 3.219          |
| 3.00         | 8,594<br>8,501  | 515.00           |              | 3.30 ic            |              |               |             |             |             |             |              |             | 3.304          |
| 3.00         | 8,607           | 515.00           |              | 3.30 ic<br>3.35 ic |              |               |             |             |             |             |              |             | 3.304          |
| 3.04         | 8,713           | 515.04           |              | 3.39 ic            |              |               |             |             |             |             |              |             | 3.345          |
| 3.08         | 8,819           | 515.08           |              | 3.43 ic            |              |               |             |             |             |             |              |             | 3.427          |
| 3.12         | 8,925           | 515.16           |              | 3.43 ic<br>3.47 ic |              |               |             |             |             |             |              |             | 3.467          |
| 3.20         | 9,032           | 515.20           |              | 3.51 ic            |              |               |             |             |             |             |              |             | 3.507          |
| 3.24         | 9,032           | 515.24           |              | 3.55 ic            |              |               |             |             |             |             |              |             | 3.546          |
| 3.24         | 9,130           | 515.24           |              | 3.58 ic            |              |               |             |             |             |             |              |             | 3.584          |
| 3.32         | 9,244           | 515.32           |              | 3.62 ic            |              |               |             |             |             |             |              |             | 3.623          |
| 3.36         | 9,456           | 515.36           |              | 3.66 ic            |              |               |             |             |             |             |              |             | 3.660          |
| 3.40         | 9,563           | 515.40           |              | 3.70 ic            |              |               |             |             |             |             |              |             | 3.698          |
| 3.44         | 9,669           | 515.44           |              | 3.73 ic            |              |               |             |             |             |             |              |             | 3.735          |
| 3.44         | 9,775           | 515.48           |              | 3.77 ic            |              |               |             |             |             |             |              |             | 3.772          |
| 3.52         | 9,881           | 515.52           |              | 3.81 ic            |              |               |             |             |             |             |              |             | 3.808          |
| 3.56         | 9,988           | 515.56           |              | 3.84 ic            |              |               |             |             |             |             |              |             | 3.844          |
| 3.60         | 10,094          | 515.60           |              | 3.88 ic            |              |               |             |             |             |             |              |             | 3.880          |
| 3.64         | 10,004          | 515.64           |              | 3.92 ic            |              |               |             |             |             |             |              |             | 3.915          |
| 3.68         | 10,200          | 515.68           |              | 3.95 ic            |              |               |             |             |             |             |              |             | 3.950          |
| 3.72         | 10,000          | 515.72           |              | 3.99 ic            |              |               |             |             |             |             |              |             | 3.985          |
| 3.76         | 10,412          | 515.76           |              | 4.02 ic            |              |               |             |             |             |             |              |             | 4.020          |
| 3.80         | 10,625          | 515.80           |              | 4.05 ic            |              |               |             |             |             |             |              |             | 4.054          |
| 3.84         | 10,023          | 515.84           |              | 4.09 ic            |              |               |             |             |             |             |              |             | 4.088          |
| 3.88         | 10,837          | 515.88           |              | 4.12 ic            |              |               |             |             |             |             |              |             | 4.121          |
| 3.92         | 10,037          | 515.92           |              | 4.12 ic<br>4.15 ic |              |               |             |             |             |             |              |             | 4.121          |
| 3.96         | 11,050          | 515.96           |              | 4.19 ic            |              |               |             |             |             |             |              |             | 4.187          |
| 4.00         | 11,156          | 516.00           |              | 4.22 ic            |              |               |             |             |             |             |              |             | 4.220          |
|              | ,               |                  |              |                    |              |               |             |             |             |             |              |             |                |

## Hydrograph Summary Report

| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1           | Rational                       | 3.325                 | 1                         | 24                       | 4,788                    |                  |                              |                               | Pre-Development           |
| 2           | Rational                       | 7.623                 | 1                         | 20                       | 9,147                    |                  |                              |                               | Post-Development          |
| 3           | Reservoir                      | 2.678                 | 1                         | 33                       | 6,391                    | 2                | 514.46                       | 7,058                         | Routed Detention Pond     |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Mill        | burry Pond 1                   | - small.g             | pw                        |                          | Return                   | Period: 10 \     | /ear                         | Monday, 04                    | 4 / 13 / 2020             |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

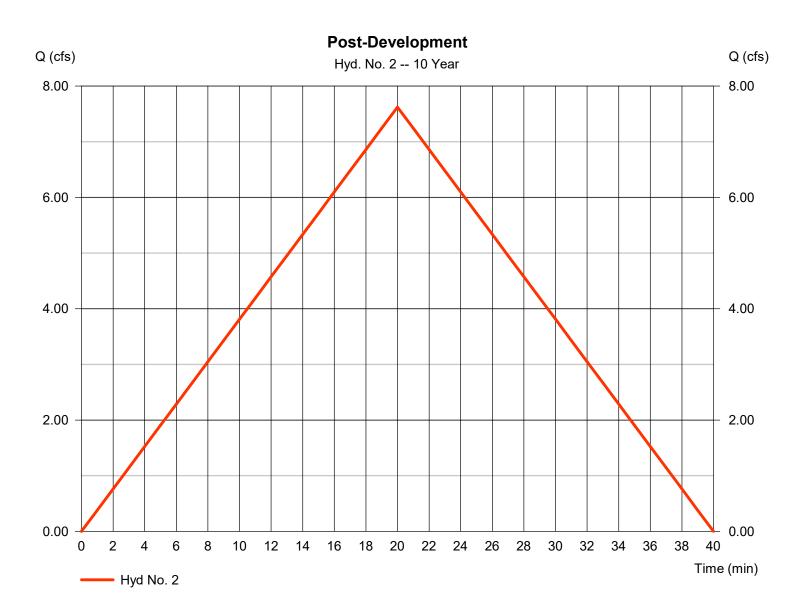
### Hyd. No. 1

Pre-Development

| = Rational           | Peak discharge                                     | = 3.325 cfs                                                                          |
|----------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|
| = 10 yrs             | Time to peak                                       | = 24 min                                                                             |
| = 1 min              | Hyd. volume                                        | = 4,788 cuft                                                                         |
| = 5.100 ac           | Runoff coeff.                                      | = 0.25*                                                                              |
| = 2.608 in/hr        | Tc by User                                         | = 24.00 min                                                                          |
| = Millbury Storm.IDF | Asc/Rec limb fact                                  | = 1/1                                                                                |
|                      | = 10 yrs<br>= 1 min<br>= 5.100 ac<br>= 2.608 in/hr | = 10 yrsTime to peak= 1 minHyd. volume= 5.100 acRunoff coeff.= 2.608 in/hrTc by User |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.25)] / 5.100




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 2

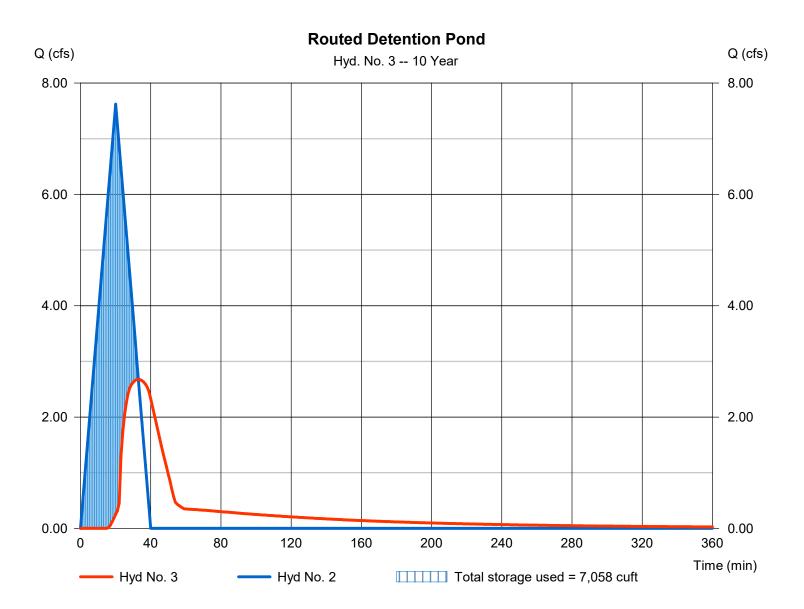
Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 7.623 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 10 yrs             | Time to peak      | = 20 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 9,147 cuft |
| Drainage area   | = 5.100 ac           | Runoff coeff.     | = 0.52*      |
| Intensity       | = 2.874 in/hr        | Tc by User        | = 20.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.90)] / 5.100



11


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

**Routed Detention Pond** 

| Hydrograph type | = Reservoir            | Peak discharge | = 2.678 cfs  |
|-----------------|------------------------|----------------|--------------|
| Storm frequency | = 10 yrs               | Time to peak   | = 33 min     |
| Time interval   | = 1 min                | Hyd. volume    | = 6,391 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 514.46 ft  |
| Reservoir name  | = UnderGround Pond 1   | Max. Storage   | = 7,058 cuft |
|                 |                        |                |              |

Storage Indication method used.



## Hydrograph Summary Report

| 2 Rational 10.11 1 20 12,130 Post-Development                                                                                             | Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
|                                                                                                                                           | 1           | Rational                       | 4.439                 | 1                         | 24                       | 6,392                    |                  |                              |                               | Pre-Development           |
| 3         Reservoir         3.458         1         33         9,374         2         515.15         8,903         Routed Detention Pond | 2           | Rational                       | 10.11                 | 1                         | 20                       | 12,130                   |                  |                              |                               | Post-Development          |
|                                                                                                                                           | 2 3         |                                |                       |                           |                          |                          | 2                |                              | 8,903                         |                           |
|                                                                                                                                           |             |                                |                       |                           |                          |                          |                  |                              |                               |                           |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development

| Peak discharge       | = 4.439 cfs                                                |
|----------------------|------------------------------------------------------------|
| Time to peak         | = 24 min                                                   |
| Hyd. volume :        | = 6,392 cuft                                               |
| Runoff coeff.        | = 0.25*                                                    |
| Tc by User =         | = 24.00 min                                                |
| OF Asc/Rec limb fact | = 1/1                                                      |
| )                    | Time to peak<br>Hyd. volume<br>Runoff coeff.<br>Tc by User |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.25)] / 5.100



14


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

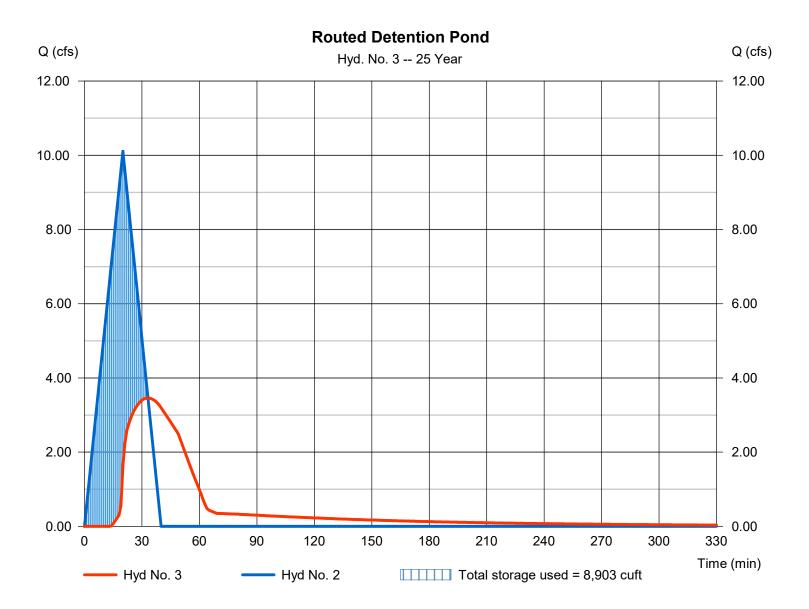
### Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 10.11 cfs   |
|-----------------|----------------------|-------------------|---------------|
| Storm frequency | = 25 yrs             | Time to peak      | = 20 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 12,130 cuft |
| Drainage area   | = 5.100 ac           | Runoff coeff.     | = 0.52*       |
| Intensity       | = 3.812 in/hr        | Tc by User        | = 20.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1         |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.90)] / 5.100




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

**Routed Detention Pond** 

| = Reservoir            | Peak discharge                                | = 3.458 cfs                                                                |
|------------------------|-----------------------------------------------|----------------------------------------------------------------------------|
| = 25 yrs               | Time to peak                                  | = 33 min                                                                   |
| = 1 min                | Hyd. volume                                   | = 9,374 cuft                                                               |
| = 2 - Post-Development | Max. Elevation                                | = 515.15 ft                                                                |
| = UnderGround Pond 1   | Max. Storage                                  | = 8,903 cuft                                                               |
|                        | = 25 yrs<br>= 1 min<br>= 2 - Post-Development | = 25 yrsTime to peak= 1 minHyd. volume= 2 - Post-DevelopmentMax. Elevation |

Storage Indication method used.



## Hydrograph Summary Report

| Hyd.<br>No.                  | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|------------------------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1                            | Rational                       | 5.158                 | 1                         | 24                       | 7,427                    |                  |                              |                               | Pre-Development           |
| 2                            | Rational                       | 11.73                 | 1                         | 20                       | 14,078                   |                  |                              |                               | Post-Development          |
| 3                            | Reservoir                      | 3.912                 | 1                         | 33                       | 11,322                   | 2                | 515.64                       | 10,190                        | Routed Detention Pond     |
|                              |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|                              |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Millburry Pond 1 - small.gpw |                                |                       |                           | Return                   | Period: 50 \             | /ear             | Monday, 04                   | 4 / 13 / 2020                 |                           |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development

| = Rational           | Peak discharge                                     | = 5.158 cfs                                                                          |
|----------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|
| = 50 yrs             | Time to peak                                       | = 24 min                                                                             |
| = 1 min              | Hyd. volume                                        | = 7,427 cuft                                                                         |
| = 5.100 ac           | Runoff coeff.                                      | = 0.25*                                                                              |
| = 4.045 in/hr        | Tc by User                                         | = 24.00 min                                                                          |
| = Millbury Storm.IDF | Asc/Rec limb fact                                  | = 1/1                                                                                |
|                      | = 50 yrs<br>= 1 min<br>= 5.100 ac<br>= 4.045 in/hr | = 50 yrsTime to peak= 1 minHyd. volume= 5.100 acRunoff coeff.= 4.045 in/hrTc by User |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.25)] / 5.100



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

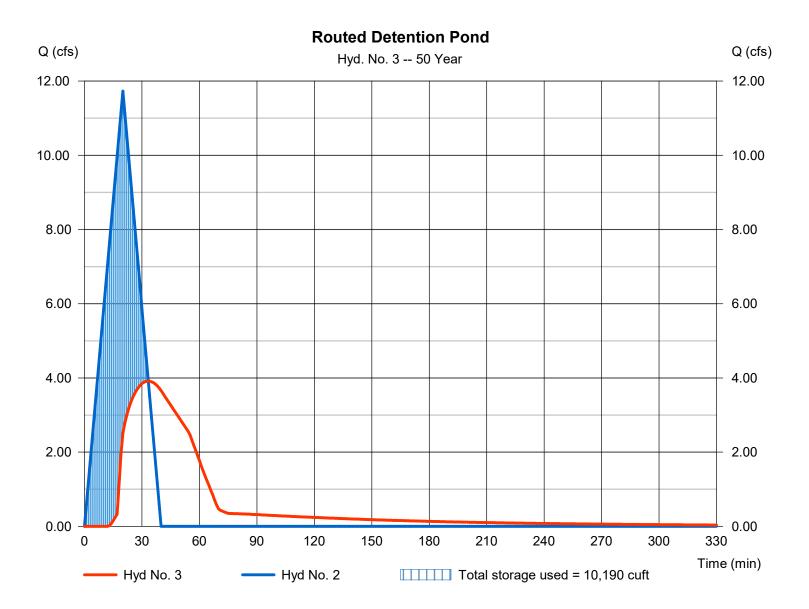
### Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 11.73 cfs   |
|-----------------|----------------------|-------------------|---------------|
| Storm frequency | = 50 yrs             | Time to peak      | = 20 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 14,078 cuft |
| Drainage area   | = 5.100 ac           | Runoff coeff.     | = 0.52*       |
| Intensity       | = 4.424 in/hr        | Tc by User        | = 20.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1         |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.90)] / 5.100




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

**Routed Detention Pond** 

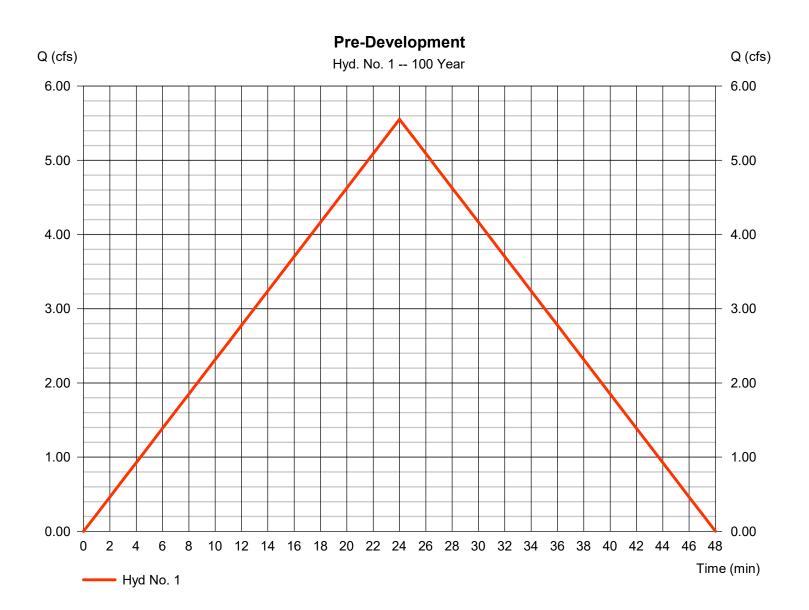
| Hydrograph type | = Reservoir            | Peak discharge | = 3.912 cfs   |
|-----------------|------------------------|----------------|---------------|
| Storm frequency | = 50 yrs               | Time to peak   | = 33 min      |
| Time interval   | = 1 min                | Hyd. volume    | = 11,322 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 515.64 ft   |
| Reservoir name  | = UnderGround Pond 1   | Max. Storage   | = 10,190 cuft |
|                 |                        |                |               |

Storage Indication method used.



## Hydrograph Summary Report

| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1           | Rational                       | 5.553                 | 1                         | 24                       | 7,997                    |                  |                              |                               | Pre-Development           |
| 2           | Rational                       | 12.60                 | 1                         | 20                       | 15,117                   |                  |                              |                               | Post-Development          |
| 3           | Reservoir                      | 4.142                 | 1                         | 33                       | 12,361                   | 2                | 515.90                       | 10,903                        | Routed Detention Pond     |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Mill        | burry Pond 1                   | - small.g             | pw                        |                          | Return F                 | Period: 100      | Year                         | Monday, 04                    | 4 / 13 / 2020             |


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

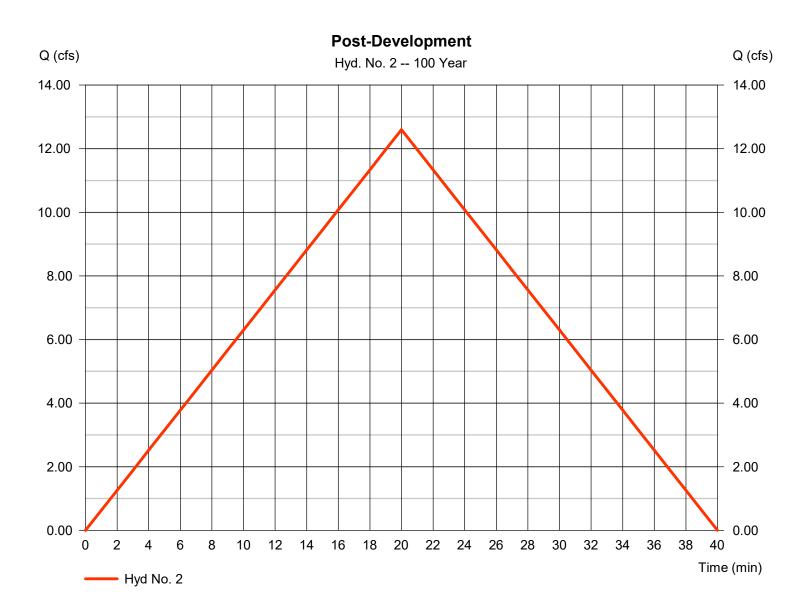
Pre-Development

| ational            | Peak discharge                       | = 5.553 cfs                                                            |
|--------------------|--------------------------------------|------------------------------------------------------------------------|
| 00 yrs             | Time to peak                         | = 24 min                                                               |
| min                | Hyd. volume                          | = 7,997 cuft                                                           |
| .100 ac            | Runoff coeff.                        | = 0.25*                                                                |
| .356 in/hr         | Tc by User                           | = 24.00 min                                                            |
| 1illbury Storm.IDF | Asc/Rec limb fact                    | = 1/1                                                                  |
|                    | 00 yrs<br>min<br>100 ac<br>356 in/hr | D0 yrsTime to peakminHyd. volume100 acRunoff coeff.356 in/hrTc by User |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.25)] / 5.100



22


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 2

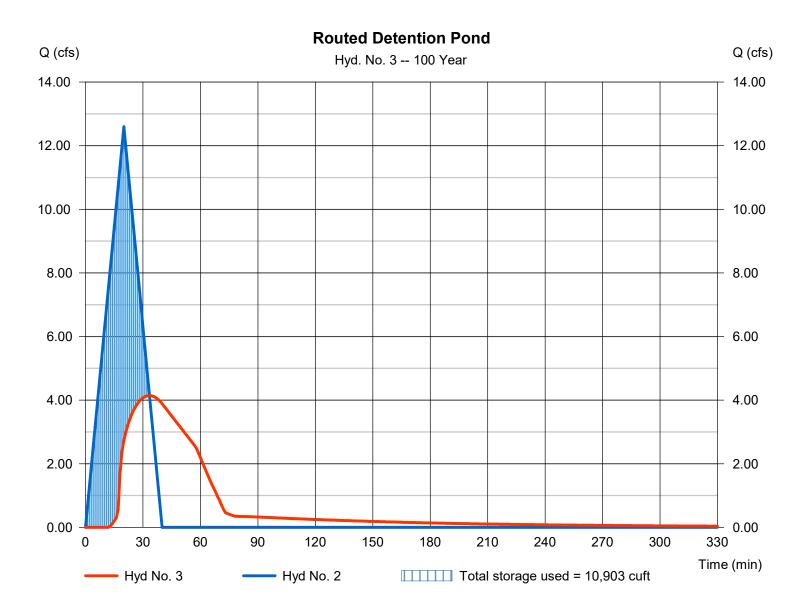
Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 12.60 cfs   |
|-----------------|----------------------|-------------------|---------------|
| Storm frequency | = 100 yrs            | Time to peak      | = 20 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 15,117 cuft |
| Drainage area   | = 5.100 ac           | Runoff coeff.     | = 0.52*       |
| Intensity       | = 4.750 in/hr        | Tc by User        | = 20.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1         |

\* Composite (Area/C) = [(3.010 x 0.25) + (2.090 x 0.90)] / 5.100



23


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

**Routed Detention Pond** 

| = Reservoir            | Peak discharge                                 | = 4.142 cfs                                                                 |
|------------------------|------------------------------------------------|-----------------------------------------------------------------------------|
| = 100 yrs              | Time to peak                                   | = 33 min                                                                    |
| = 1 min                | Hyd. volume                                    | = 12,361 cuft                                                               |
| = 2 - Post-Development | Max. Elevation                                 | = 515.90 ft                                                                 |
| = UnderGround Pond 1   | Max. Storage                                   | = 10,903 cuft                                                               |
|                        | = 100 yrs<br>= 1 min<br>= 2 - Post-Development | = 100 yrsTime to peak= 1 minHyd. volume= 2 - Post-DevelopmentMax. Elevation |

Storage Indication method used.



### **Hydraflow Rainfall Report**

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

| Return<br>Period | Intensity-Duration-Frequency Equation Coefficients (FHA) |         |        |       |  |  |  |  |  |  |
|------------------|----------------------------------------------------------|---------|--------|-------|--|--|--|--|--|--|
| (Yrs)            | В                                                        | D       | E      | (N/A) |  |  |  |  |  |  |
| 1                | 56.1571                                                  | 12.6000 | 0.8599 |       |  |  |  |  |  |  |
| 2                | 21.4950                                                  | 5.3000  | 0.6807 |       |  |  |  |  |  |  |
| 3                | 0.0000                                                   | 0.0000  | 0.0000 |       |  |  |  |  |  |  |
| 5                | 64.6694                                                  | 13.4000 | 0.7859 |       |  |  |  |  |  |  |
| 10               | 34.7603                                                  | 8.6000  | 0.7433 |       |  |  |  |  |  |  |
| 25               | 33.1106                                                  | 7.0000  | 0.6559 |       |  |  |  |  |  |  |
| 50               | 56.6539                                                  | 11.2000 | 0.7412 |       |  |  |  |  |  |  |
| 100              | 34.5085                                                  | 6.1000  | 0.6079 |       |  |  |  |  |  |  |

File name: Millbury Storm.IDF

### Intensity = B / (Tc + D)^E

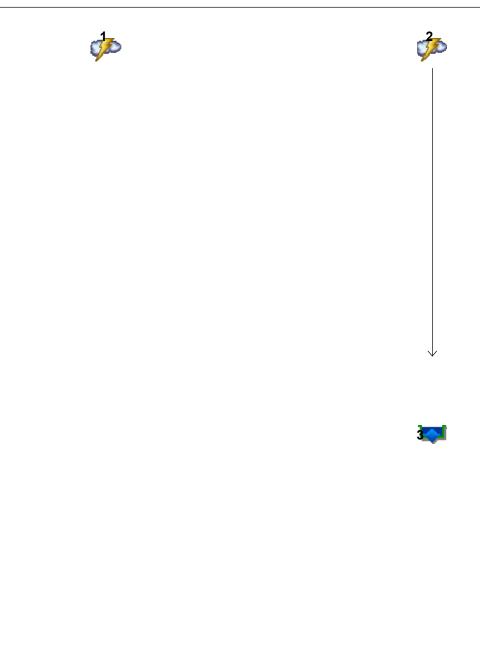
| Return          | Intensity Values (in/hr) |      |      |      |      |      |      |      |      |      |      |      |
|-----------------|--------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Period<br>(Yrs) | 5 min                    | 10   | 15   | 20   | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   |
| 1               | 4.77                     | 3.85 | 3.24 | 2.81 | 2.48 | 2.23 | 2.03 | 1.86 | 1.72 | 1.60 | 1.50 | 1.41 |
| 2               | 4.39                     | 3.36 | 2.77 | 2.38 | 2.11 | 1.90 | 1.74 | 1.60 | 1.49 | 1.40 | 1.32 | 1.25 |
| 3               | 0.00                     | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 5               | 6.56                     | 5.43 | 4.66 | 4.10 | 3.68 | 3.34 | 3.07 | 2.84 | 2.64 | 2.48 | 2.34 | 2.21 |
| 10              | 4.99                     | 3.96 | 3.32 | 2.87 | 2.55 | 2.30 | 2.10 | 1.94 | 1.80 | 1.69 | 1.59 | 1.50 |
| 25              | 6.49                     | 5.16 | 4.36 | 3.81 | 3.41 | 3.10 | 2.85 | 2.65 | 2.48 | 2.33 | 2.21 | 2.10 |
| 50              | 7.19                     | 5.89 | 5.04 | 4.42 | 3.96 | 3.60 | 3.31 | 3.06 | 2.86 | 2.68 | 2.53 | 2.40 |
| 100             | 7.99                     | 6.37 | 5.41 | 4.75 | 4.27 | 3.90 | 3.60 | 3.36 | 3.16 | 2.98 | 2.83 | 2.70 |

Tc = time in minutes. Values may exceed 60.

|                       |      | Rainfall Precipitation Table (in) |      |      |       |       |       |        |  |  |  |  |
|-----------------------|------|-----------------------------------|------|------|-------|-------|-------|--------|--|--|--|--|
| Storm<br>Distribution | 1-yr | 2-yr                              | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |  |  |  |  |
| SCS 24-hour           | 0.00 | 3.90                              | 0.00 | 0.00 | 5.65  | 6.78  | 9.60  | 8.00   |  |  |  |  |
| SCS 6-Hr              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |
| Huff-1st              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |
| Huff-2nd              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |
| Huff-3rd              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |
| Huff-4th              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |
| Huff-Indy             | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |
| Custom                | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |

Precip. file name: D:\My stuff\Ozark Beach Vollyball\Storm Design\Ozark.pcp

### Hydraflow Table of Contents


| Watershed Model Schematic                                                                                                                                                                                                                 | . 1                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Hydrograph Return Period Recap                                                                                                                                                                                                            | . 2                       |
| 2 - Year<br>Summary Report<br>Hydrograph Reports<br>Hydrograph No. 1, Rational, Pre-Development<br>Hydrograph No. 2, Rational, Post-Development<br>Hydrograph No. 3, Reservoir, Routed Detention Pond<br>Pond Report - UnderGround Pond 1 | <b>4</b><br>4<br>5<br>. 6 |
| <b>10 - Year</b><br><b>Summary Report.</b><br><b>Hydrograph Reports.</b><br>Hydrograph No. 1, Rational, Pre-Development<br>Hydrograph No. 2, Rational, Post-Development<br>Hydrograph No. 3, Reservoir, Routed Detention Pond.            | <b>10</b><br>10<br>11     |
| 25 - Year<br>Summary Report<br>Hydrograph Reports<br>Hydrograph No. 1, Rational, Pre-Development<br>Hydrograph No. 2, Rational, Post-Development<br>Hydrograph No. 3, Reservoir, Routed Detention Pond                                    | <b>14</b><br>14<br>15     |
| <b>50 - Year</b><br><b>Summary Report.</b><br><b>Hydrograph Reports.</b><br>Hydrograph No. 1, Rational, Pre-Development.<br>Hydrograph No. 2, Rational, Post-Development.<br>Hydrograph No. 3, Reservoir, Routed Detention Pond.          | <b>18</b><br>18<br>19     |
| <b>100 - Year</b><br><b>Summary Report.</b><br><b>Hydrograph Reports.</b><br>Hydrograph No. 1, Rational, Pre-Development<br>Hydrograph No. 2, Rational, Post-Development<br>Hydrograph No. 3, Reservoir, Routed Detention Pond.           | <b>22</b><br>22<br>23     |
| IDF Report                                                                                                                                                                                                                                | 25                        |

## **Stormwater Attenuation Calculations & Rainfall Data**

POND 2

### Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020



### <u>Legend</u>

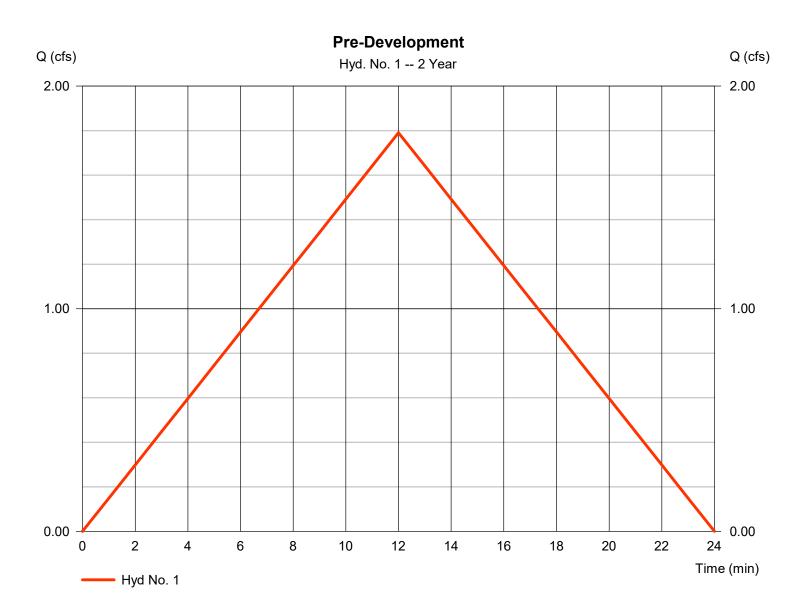
| <u>Hyd.</u> | <u>Origin</u> | <b>Description</b> |
|-------------|---------------|--------------------|
| 1           | Rational      | Pre-Development    |
| 2           | Rational      | Post-Development   |
| 3           | Reservoir     | Routed Pond        |

Project: Millburry Pond 2.gpw

# Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

| Hyd.<br>No. | Hydrograph<br>type | Inflow<br>hyd(s) |      |       | 1    |      | tflow (cfs) |       |       | 1        | Hydrograph<br>Description |
|-------------|--------------------|------------------|------|-------|------|------|-------------|-------|-------|----------|---------------------------|
|             | (origin)           |                  | 1-yr | 2-yr  | 3-yr | 5-yr | 10-yr       | 25-yr | 50-yr | 100-yr   |                           |
| 1           | Rational           |                  |      | 1.791 |      |      | 2.128       | 2.784 | 3.196 | 3.442    | Pre-Development           |
| 2           | Rational           |                  |      | 9.175 |      |      | 10.43       | 13.55 | 15.01 | 16.68    | Post-Development          |
| 3           | Reservoir          | 2                |      | 1.553 |      |      | 1.782       | 2.289 | 2.494 | 2.715    | Routed Pond               |
|             |                    |                  |      |       |      |      |             |       |       |          |                           |
|             |                    |                  |      |       |      |      |             |       |       |          |                           |
|             |                    |                  |      |       |      |      |             |       |       |          |                           |
|             |                    |                  |      |       |      |      |             |       |       |          |                           |
|             |                    |                  |      |       |      |      |             |       |       |          |                           |
|             |                    |                  |      |       |      |      |             |       |       |          |                           |
| Pro         | j. file: Millbu    |                  |      |       |      |      |             |       | Mc    | onday 04 | / 13 / 2020               |

## Hydrograph Summary Report


| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description       |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------------|
| 1           | Rational                       | 1.791                 | 1                         | 12                       | 1,289                    |                  |                              |                               | Pre-Development                 |
| 2           | Rational                       | 9.175                 | 1                         | 5                        | 2,753                    |                  |                              |                               | Post-Development                |
| 2 3         | Reservoir                      | 9.175                 | 1                         | 9                        | 2,753                    | 2                | 485.69                       | 2,473                         | Post-Development<br>Routed Pond |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                                 |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                                 |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development

| Hydrograph type | = Rational           | Peak discharge    | = 1.791 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 2 yrs              | Time to peak      | = 12 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 1,289 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.25       |
| Intensity       | = 3.087 in/hr        | Tc by TR55        | = 12.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |

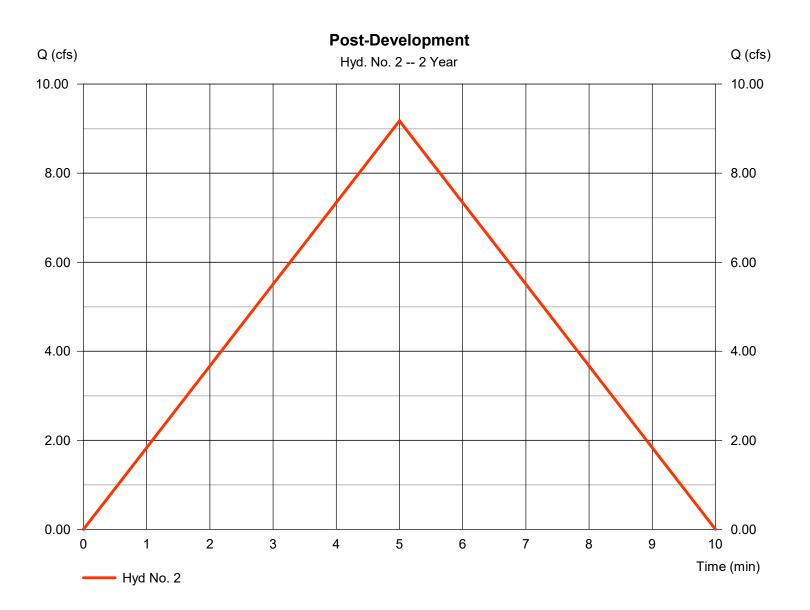


Monday, 04 / 13 / 2020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development


| <b>Description</b>                                                                                                                 | A                                              |   | <u>B</u>                              |   | <u>C</u>                              |   | <u>Totals</u> |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---|---------------------------------------|---|---------------------------------------|---|---------------|
| Sheet Flow<br>Manning's n-value<br>Flow length (ft)<br>Two-year 24-hr precip. (in)<br>Land slope (%)                               | = 0.400<br>= 194.0<br>= 4.30<br>= 20.62        |   | 0.011<br>0.0<br>0.00<br>0.00          |   | 0.011<br>0.0<br>0.00<br>0.00          |   | 40.00         |
| Travel Time (min)                                                                                                                  | = 12.38                                        | + | 0.00                                  | + | 0.00                                  | = | 12.38         |
| Shallow Concentrated Flow<br>Flow length (ft)<br>Watercourse slope (%)<br>Surface description<br>Average velocity (ft/s)           | = 0.00<br>= 0.00<br>= Paved<br>=0.00           |   | 0.00<br>0.00<br>Paved<br>0.00         |   | 0.00<br>0.00<br>Paved<br>0.00         |   |               |
| Travel Time (min)                                                                                                                  | = 0.00                                         | + | 0.00                                  | + | 0.00                                  | = | 0.00          |
|                                                                                                                                    |                                                |   |                                       |   |                                       |   |               |
| Channel Flow<br>X sectional flow area (sqft)<br>Wetted perimeter (ft)<br>Channel slope (%)<br>Manning's n-value<br>Velocity (ft/s) | = 0.00<br>= 0.00<br>= 0.00<br>= 0.015<br>=0.00 |   | 0.00<br>0.00<br>0.00<br>0.015<br>0.00 |   | 0.00<br>0.00<br>0.00<br>0.015<br>0.00 |   |               |
| X sectional flow area (sqft)<br>Wetted perimeter (ft)<br>Channel slope (%)<br>Manning's n-value                                    | = 0.00<br>= 0.00<br>= 0.015                    |   | 0.00<br>0.00<br>0.015                 |   | 0.00<br>0.00<br>0.015                 |   |               |
| X sectional flow area (sqft)<br>Wetted perimeter (ft)<br>Channel slope (%)<br>Manning's n-value<br>Velocity (ft/s)                 | = 0.00<br>= 0.00<br>= 0.015<br>=0.00           | + | 0.00<br>0.00<br>0.015<br>0.00         | + | 0.00<br>0.00<br>0.015<br>0.00         | = | 0.00          |

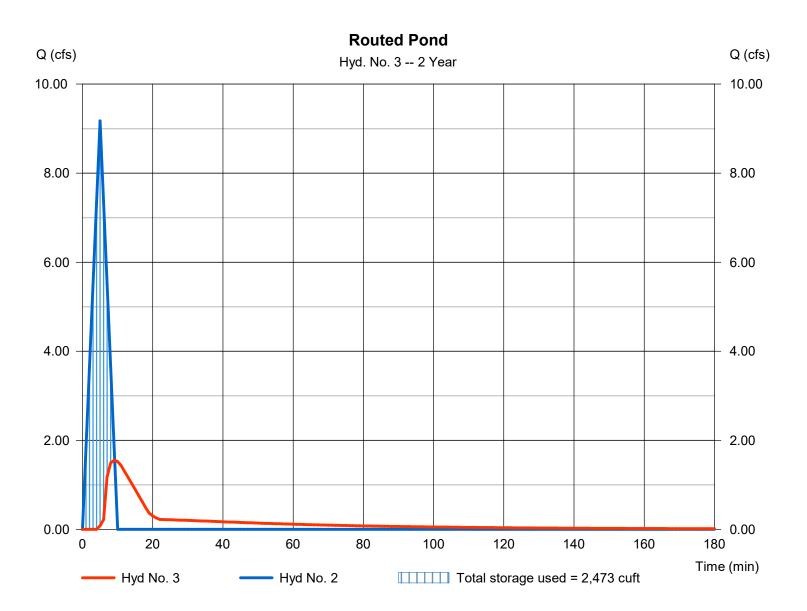
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 9.175 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 2 yrs              | Time to peak      | = 5 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 2,753 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.9        |
| Intensity       | = 4.394 in/hr        | Tc by User        | = 5.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

**Routed Pond** 

| Hydrograph type | = Reservoir            | Peak discharge | = 1.553 cfs  |
|-----------------|------------------------|----------------|--------------|
| Storm frequency | = 2 yrs                | Time to peak   | = 9 min      |
| Time interval   | = 1 min                | Hyd. volume    | = 1,678 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 485.69 ft  |
| Reservoir name  | = Underground Pond 2   | Max. Storage   | = 2,473 cuft |

Storage Indication method used.



### **Pond Report**

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

#### Pond No. 1 - Underground Pond 2

#### Pond Data

**UG Chambers -**Invert elev. = 484.50 ft, Rise x Span =  $0.87 \times 1.41$  ft, Barrel Len = 7.12 ft, No. Barrels = 51, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 483.50 ft, Width = 7.12 ft, Height = 4.00 ft, Voids = 40.00%

#### Stage / Storage Table

| Stage (ft) | Elevation (ft) | Contour area (sqft) | Incr. Storage (cuft) | Total storage (cuft) |
|------------|----------------|---------------------|----------------------|----------------------|
| 0.00       | 483.50         | n/a                 | 0                    | 0                    |
| 0.40       | 483.90         | n/a                 | 414                  | 414                  |
| 0.80       | 484.30         | n/a                 | 414                  | 827                  |
| 1.20       | 484.70         | n/a                 | 475                  | 1,302                |
| 1.60       | 485.10         | n/a                 | 521                  | 1,823                |
| 2.00       | 485.50         | n/a                 | 455                  | 2,279                |
| 2.40       | 485.90         | n/a                 | 414                  | 2,692                |
| 2.80       | 486.30         | n/a                 | 414                  | 3,106                |
| 3.20       | 486.70         | n/a                 | 414                  | 3,520                |
| 3.60       | 487.10         | n/a                 | 414                  | 3,934                |
| 4.00       | 487.50         | n/a                 | 414                  | 4,347                |

#### **Culvert / Orifice Structures**

#### **Weir Structures**

|                 | [A]    | [B]    | [C]  | [PrfRsr] |                | [A]         | [B]        | [C]  | [D]  |
|-----------------|--------|--------|------|----------|----------------|-------------|------------|------|------|
| Rise (in)       | = 0.00 | 8.00   | 0.00 | 0.00     | Crest Len (ft) | = 0.00      | 0.00       | 0.00 | 0.00 |
| Span (in)       | = 0.00 | 8.00   | 0.00 | 0.00     | Crest El. (ft) | = 0.00      | 0.00       | 0.00 | 0.00 |
| No. Barrels     | = 0    | 1      | 0    | 0        | Weir Coeff.    | = 3.33      | 3.33       | 3.33 | 3.33 |
| Invert El. (ft) | = 0.00 | 484.50 | 0.00 | 0.00     | Weir Type      | =           |            |      |      |
| Length (ft)     | = 0.00 | 1.00   | 0.00 | 0.00     | Multi-Stage    | = No        | No         | No   | No   |
| Slope (%)       | = 0.00 | 1.00   | 0.00 | n/a      |                |             |            |      |      |
| N-Value         | = .013 | .013   | .013 | n/a      |                |             |            |      |      |
| Orifice Coeff.  | = 0.60 | 0.60   | 0.60 | 0.60     | Exfil.(in/hr)  | = 0.000 (by | /Wet area) |      |      |
| Multi-Stage     | = n/a  | No     | No   | No       | TW Elev. (ft)  | = 0.00      |            |      |      |

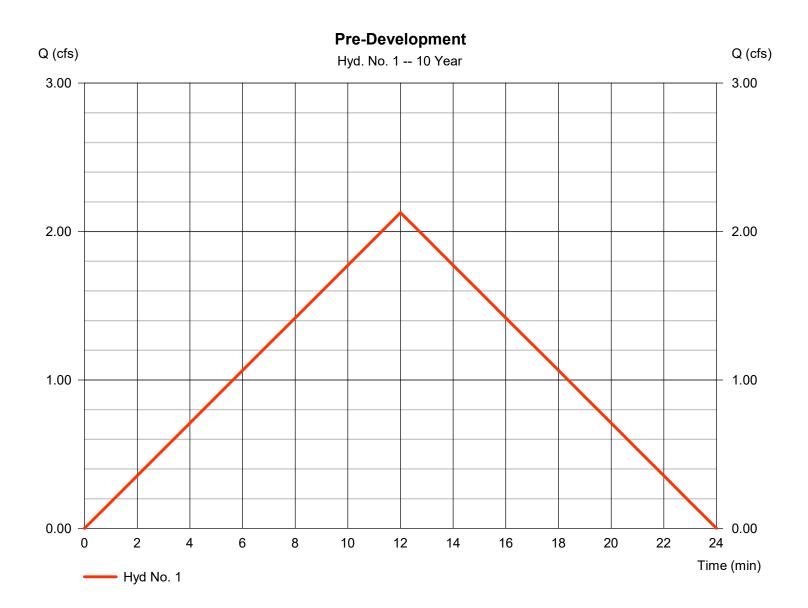
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

| olugo |         | Jieena ge |       |                    |       |        |      |      |      |      |       |      |       |
|-------|---------|-----------|-------|--------------------|-------|--------|------|------|------|------|-------|------|-------|
| Stage | Storage | Elevation | Clv A | Clv B              | Clv C | PrfRsr | Wr A | Wr B | Wr C | Wr D | Exfil | User | Total |
| ft    | cuft    | ft        | cfs   | cfs                | cfs   | cfs    | cfs  | cfs  | cfs  | cfs  | cfs   | cfs  | cfs   |
| 0.00  | 0       | 483.50    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.00  | 0       | 483.50    |       | 0.00               |       |        |      |      |      |      |       |      |       |
|       | 41      |           |       |                    |       |        |      |      |      |      |       |      | 0.000 |
| 0.08  | 83      | 483.58    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.12  | 124     | 483.62    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.16  | 165     | 483.66    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.20  | 207     | 483.70    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.24  | 248     | 483.74    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.28  | 290     | 483.78    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.32  | 331     | 483.82    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.36  | 372     | 483.86    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.40  | 414     | 483.90    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.44  | 455     | 483.94    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.48  | 496     | 483.98    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.52  | 538     | 484.02    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.56  | 579     | 484.06    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.60  | 621     | 484.10    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.64  | 662     | 484.14    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.68  | 703     | 484.18    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.72  | 745     | 484.22    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.76  | 786     | 484.26    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.80  | 827     | 484.30    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.84  | 875     | 484.34    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.88  | 922     | 484.38    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.92  | 970     | 484.42    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 0.96  | 1,017   | 484.46    |       | 0.00               |       |        |      |      |      |      |       |      | 0.000 |
| 1.00  | 1,065   | 484.50    |       | 0.00 oc            |       |        |      |      |      |      |       |      | 0.000 |
| 1.04  | 1,112   | 484.54    |       | 0.00 oc            |       |        |      |      |      |      |       |      | 0.005 |
| 1.08  | 1,160   | 484.58    |       | 0.01 oc            |       |        |      |      |      |      |       |      | 0.014 |
| 1.12  | 1,207   | 484.62    |       | 0.03 oc            |       |        |      |      |      |      |       |      | 0.027 |
| 1.16  | 1,255   | 484.66    |       | 0.04 oc            |       |        |      |      |      |      |       |      | 0.041 |
| 1.20  | 1,302   | 484.70    |       | 0.04 OC<br>0.06 oc |       |        |      |      |      |      |       |      | 0.056 |
| 1.20  | 1,354   | 484.74    |       | 0.00 0C<br>0.07 oc |       |        |      |      |      |      |       |      | 0.030 |
| 1.24  | 1,004   | 404.74    |       | 0.07 00            |       |        |      |      |      |      | <br>  |      |       |
|       |         |           |       |                    |       |        |      |      |      |      |       |      |       |

# Underground Pond 2 Stage / Storage / Discharge Table

| Slage        | -               | Discharge        | lable        |                    |              |               |             |             |             |             |              |             |                |
|--------------|-----------------|------------------|--------------|--------------------|--------------|---------------|-------------|-------------|-------------|-------------|--------------|-------------|----------------|
| Stage<br>ft  | Storage<br>cuft | Elevation<br>ft  | Clv A<br>cfs | Clv B<br>cfs       | Clv C<br>cfs | PrfRsr<br>cfs | Wr A<br>cfs | Wr B<br>cfs | Wr C<br>cfs | Wr D<br>cfs | Exfil<br>cfs | User<br>cfs | Total<br>cfs   |
| 1.28         | 1,406           | 484.78           |              | 0.09 oc            |              |               |             |             |             |             |              |             | 0.089          |
| 1.32         | 1,459           | 484.82           |              | 0.11 oc            |              |               |             |             |             |             |              |             | 0.107          |
| 1.36         | 1,511           | 484.86           |              | 0.12 oc            |              |               |             |             |             |             |              |             | 0.124          |
| 1.40         | 1,563           | 484.90           |              | 0.14 oc            |              |               |             |             |             |             |              |             | 0.141          |
| 1.44         | 1,615           | 484.94           |              | 0.16 oc            |              |               |             |             |             |             |              |             | 0.158          |
| 1.48         | 1,667           | 484.98           |              | 0.17 oc            |              |               |             |             |             |             |              |             | 0.174          |
| 1.52         | 1,719           | 485.02           |              | 0.19 oc            |              |               |             |             |             |             |              |             | 0.189          |
| 1.56         | 1,771           | 485.06           |              | 0.20 oc            |              |               |             |             |             |             |              |             | 0.203          |
| 1.60         | 1,823           | 485.10           |              | 0.21 oc            |              |               |             |             |             |             |              |             | 0.214          |
| 1.64         | 1,869           | 485.14           |              | 0.22 oc            |              |               |             |             |             |             |              |             | 0.222          |
| 1.68         | 1,915           | 485.18           |              | 0.34 oc            |              |               |             |             |             |             |              |             | 0.344          |
| 1.72         | 1,960           | 485.22           |              | 0.57 oc            |              |               |             |             |             |             |              |             | 0.566          |
| 1.76         | 2,006           | 485.26           |              | 0.72 oc            |              |               |             |             |             |             |              |             | 0.723          |
| 1.80         | 2,051           | 485.30           |              | 0.85 oc            |              |               |             |             |             |             |              |             | 0.851          |
| 1.84         | 2,097           | 485.34           |              | 0.96 oc            |              |               |             |             |             |             |              |             | 0.962          |
| 1.88         | 2,142           | 485.38           |              | 1.06 oc            |              |               |             |             |             |             |              |             | 1.062          |
| 1.92         | 2,188           | 485.42           |              | 1.15 oc            |              |               |             |             |             |             |              |             | 1.153          |
| 1.96         | 2,233           | 485.46           |              | 1.24 oc            |              |               |             |             |             |             |              |             | 1.238          |
| 2.00         | 2,279           | 485.50           |              | 1.32 oc            |              |               |             |             |             |             |              |             | 1.317          |
| 2.04         | 2,320           | 485.54           |              | 1.39 oc            |              |               |             |             |             |             |              |             | 1.392          |
| 2.08         | 2,361           | 485.58           |              | 1.45 ic            |              |               |             |             |             |             |              |             | 1.452          |
| 2.12         | 2,403           | 485.62           |              | 1.49 ic            |              |               |             |             |             |             |              |             | 1.491          |
| 2.16         | 2,444           | 485.66           |              | 1.53 ic            |              |               |             |             |             |             |              |             | 1.528          |
| 2.20         | 2,486           | 485.70           |              | 1.56 ic            |              |               |             |             |             |             |              |             | 1.565          |
| 2.24         | 2,527           | 485.74           |              | 1.60 ic            |              |               |             |             |             |             |              |             | 1.600          |
| 2.28         | 2,568           | 485.78           |              | 1.64 ic            |              |               |             |             |             |             |              |             | 1.635          |
| 2.32         | 2,610           | 485.82           |              | 1.67 ic            |              |               |             |             |             |             |              |             | 1.669          |
| 2.36         | 2,651           | 485.86           |              | 1.70 ic            |              |               |             |             |             |             |              |             | 1.703          |
| 2.40         | 2,692           | 485.90           |              | 1.74 ic            |              |               |             |             |             |             |              |             | 1.736          |
| 2.44         | 2,734           | 485.94           |              | 1.77 ic            |              |               |             |             |             |             |              |             | 1.768          |
| 2.48         | 2,775           | 485.98           |              | 1.80 ic            |              |               |             |             |             |             |              |             | 1.800          |
| 2.52         | 2,817           | 486.02           |              | 1.83 ic            |              |               |             |             |             |             |              |             | 1.831          |
| 2.56         | 2,858           | 486.06           |              | 1.86 ic            |              |               |             |             |             |             |              |             | 1.861          |
| 2.60         | 2,899           | 486.10           |              | 1.89 ic            |              |               |             |             |             |             |              |             | 1.891          |
| 2.64         | 2,941           | 486.14           |              | 1.92 ic            |              |               |             |             |             |             |              |             | 1.921          |
| 2.68         | 2,982           | 486.18           |              | 1.95 ic            |              |               |             |             |             |             |              |             | 1.950          |
| 2.72         | 3,023           | 486.22           |              | 1.98 ic            |              |               |             |             |             |             |              |             | 1.979          |
| 2.76         | 3,065           | 486.26           |              | 2.01 ic            |              |               |             |             |             |             |              |             | 2.007          |
| 2.80         | 3,106           | 486.30<br>486.34 |              | 2.04 ic<br>2.06 ic |              |               |             |             |             |             |              |             | 2.035          |
| 2.84         | 3,148           |                  |              |                    |              |               |             |             |             |             |              |             | 2.063          |
| 2.88         | 3,189           | 486.38<br>486.42 |              | 2.09 ic            |              |               |             |             |             |             |              |             | 2.090<br>2.117 |
| 2.92         | 3,230           | 486.42<br>486.46 |              | 2.12 ic            |              |               |             |             |             |             |              |             | 2.117          |
| 2.96         | 3,272           | 486.50           |              | 2.14 ic<br>2.17 ic |              |               |             |             |             |             |              |             | 2.143          |
| 3.00<br>3.04 | 3,313           | 486.50           |              |                    |              |               |             |             |             |             |              |             |                |
|              | 3,354           |                  |              | 2.20 ic            |              |               |             |             |             |             |              |             | 2.195          |
| 3.08<br>3.12 | 3,396           | 486.58<br>486.62 |              | 2.22 ic            |              |               |             |             |             |             |              |             | 2.221<br>2.246 |
| 3.12         | 3,437           | 486.66           |              | 2.25 ic<br>2.27 ic |              |               |             |             |             |             |              |             |                |
|              | 3,479           | 486.70           |              |                    |              |               |             |             |             |             |              |             | 2.271          |
| 3.20<br>3.24 | 3,520<br>3,561  | 486.70           |              | 2.30 ic<br>2.32 ic |              |               |             |             |             |             |              |             | 2.296<br>2.321 |
| 3.24         | 3,603           | 486.74           |              | 2.32 ic<br>2.34 ic |              |               |             |             |             |             |              |             | 2.321          |
| 3.32         | 3,644           | 486.82           |              | 2.34 ic<br>2.37 ic |              |               |             |             |             |             |              |             | 2.345          |
| 3.36         | 3,685           | 486.86           |              | 2.37 ic<br>2.39 ic |              |               |             |             |             |             |              |             | 2.309          |
| 3.30         | 3,005           | 486.90           |              | 2.39 lc<br>2.42 ic |              |               |             |             |             |             |              |             | 2.392          |
| 3.40         | 3,768           | 486.90           |              | 2.42 ic<br>2.44 ic |              |               |             |             |             |             |              |             | 2.410          |
| 3.44         | 3,810           | 486.98           |              | 2.44 ic<br>2.46 ic |              |               |             |             |             |             |              |             | 2.439          |
| 3.52         | 3,810           | 487.02           |              | 2.40 ic<br>2.49 ic |              |               |             |             |             |             |              |             | 2.402          |
| 3.56         | 3,892           | 487.06           |              | 2.43 ic<br>2.51 ic |              |               |             |             |             |             |              |             | 2.508          |
| 3.60         | 3,934           | 487.10           |              | 2.51 ic            |              |               |             |             |             |             |              |             | 2.530          |
| 3.64         | 3,975           | 487.14           |              | 2.55 ic            |              |               |             |             |             |             |              |             | 2.552          |
| 3.68         | 4,016           | 487.14           |              | 2.55 ic<br>2.57 ic |              |               |             |             |             |             |              |             | 2.552          |
| 3.72         | 4,010           | 487.18           |              | 2.60 ic            |              |               |             |             |             |             |              |             | 2.596          |
| 3.72         | 4,038           | 487.22           |              | 2.60 ic<br>2.62 ic |              |               |             |             |             |             |              |             | 2.590          |
| 3.80         | 4,099           | 487.20           |              | 2.62 ic<br>2.64 ic |              |               |             |             |             |             |              |             | 2.639          |
| 3.80<br>3.84 | 4,141<br>4,182  | 487.30           |              | 2.64 ic<br>2.66 ic |              |               |             |             |             |             |              |             | 2.639          |
| 3.88         | 4,182           | 487.34           |              | 2.68 ic            |              |               |             |             |             |             |              |             | 2.682          |
| 3.88         | 4,223           | 487.42           |              | 2.00 ic<br>2.70 ic |              |               |             |             |             |             |              |             | 2.002          |
| 3.92         | 4,203           | 487.42           |              | 2.70 ic<br>2.72 ic |              |               |             |             |             |             |              |             | 2.703          |
| 4.00         | 4,347           | 487.50           |              | 2.72 ic<br>2.74 ic |              |               |             |             |             |             |              |             | 2.744          |
|              | .,              |                  |              |                    |              |               |             |             |             |             |              |             |                |

## Hydrograph Summary Report


| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1           | Rational                       | 2.128                 | 1                         | 12                       | 1,532                    |                  |                              |                               | Pre-Development           |
| 2           | Rational                       | 10.43                 | 1                         | 5                        | 3,129                    |                  |                              |                               | Post-Development          |
| 3           | Reservoir                      | 1.782                 | 1                         | 9                        | 2,054                    | 2                | 485.96                       | 2,752                         | Routed Pond               |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Mill        | burry Pond 2                   |                       |                           |                          | Return                   | Period: 10 \     | /ear                         | Monday. 04                    | 4 / 13 / 2020             |

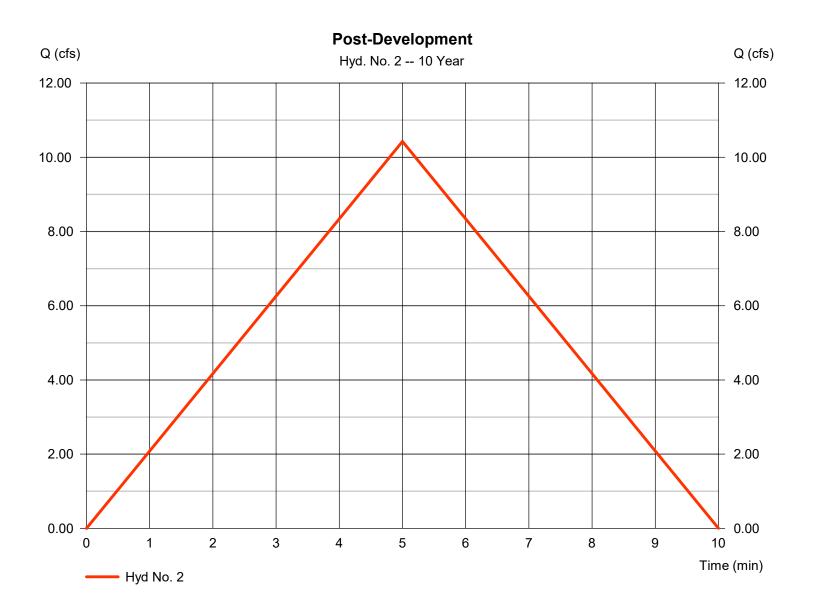
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development

| Hydrograph type | = Rational           | Peak discharge    | = 2.128 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 10 yrs             | Time to peak      | = 12 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 1,532 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.25       |
| Intensity       | = 3.668 in/hr        | Tc by TR55        | = 12.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




11

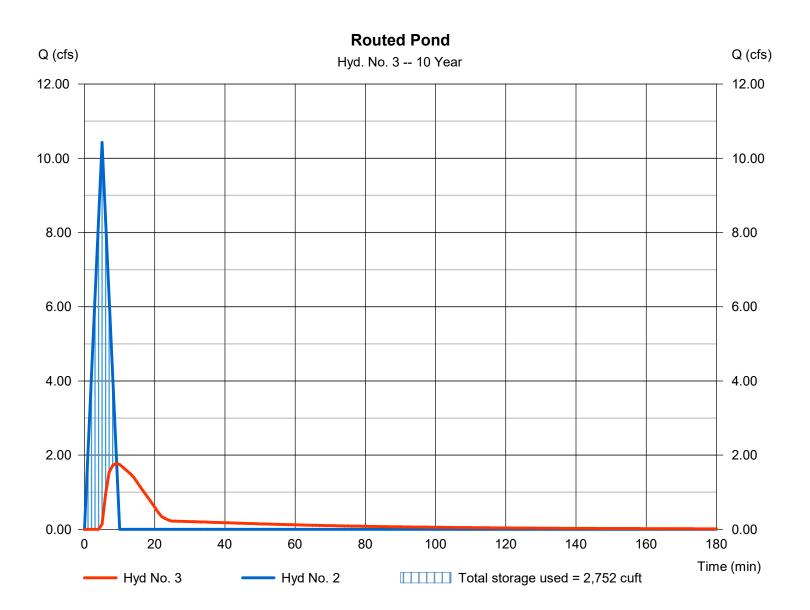
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 10.43 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 10 yrs             | Time to peak      | = 5 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 3,129 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.9        |
| Intensity       | = 4.994 in/hr        | Tc by User        | = 5.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 3

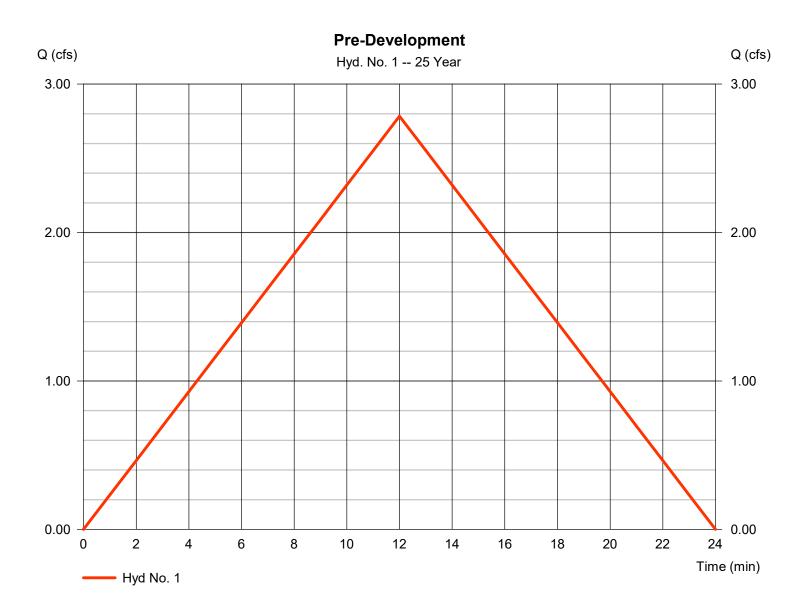
**Routed Pond** 

| Hydrograph type | = Reservoir            | Peak discharge | = 1.782 cfs  |
|-----------------|------------------------|----------------|--------------|
| Storm frequency | = 10 yrs               | Time to peak   | = 9 min      |
| Time interval   | = 1 min                | Hyd. volume    | = 2,054 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 485.96 ft  |
| Reservoir name  | = Underground Pond 2   | Max. Storage   | = 2,752 cuft |

Storage Indication method used.



## Hydrograph Summary Report

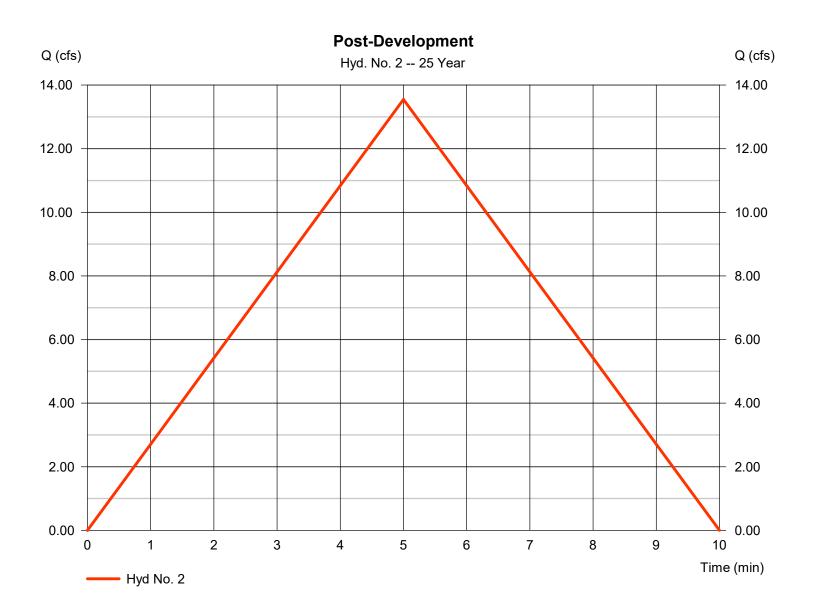

| lyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1           | Rational                       | 2.784                 | 1                         | 12                       | 2,004                    |                  |                              |                               | Pre-Development           |
| 2           | Rational                       | 13.55                 | 1                         | 5                        | 4,064                    |                  |                              |                               | Post-Development          |
| 3           | Reservoir                      | 2.289                 | 1                         | 9                        | 2,989                    | 2                | 486.69                       | 3,508                         | Routed Pond               |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Mill        | burry Pond 2                   | dpw                   |                           |                          | Return                   | Period: 25 \     | l                            | Monday 0                      | 4 / 13 / 2020             |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

### Hyd. No. 1

Pre-Development

| Hydrograph type | = Rational           | Peak discharge    | = 2.784 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 25 yrs             | Time to peak      | = 12 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 2,004 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.25       |
| Intensity       | = 4.800 in/hr        | Tc by TR55        | = 12.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |



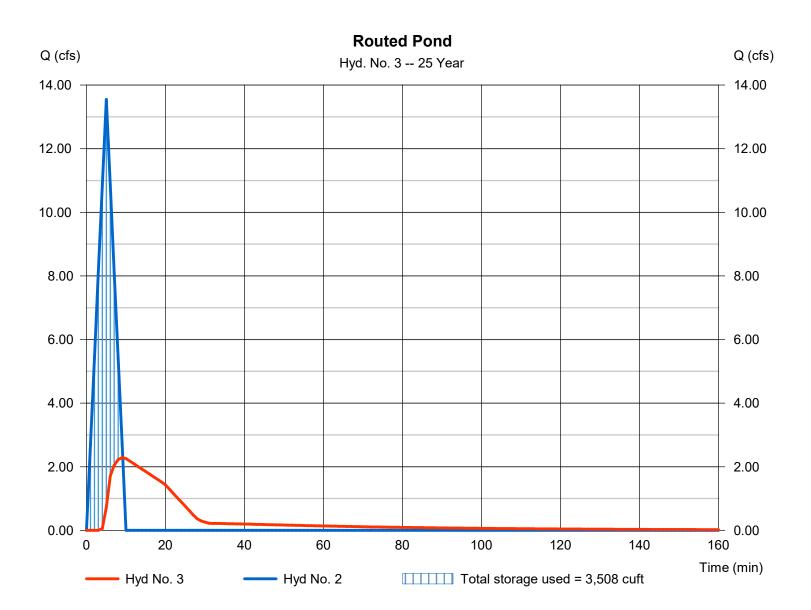

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 13.55 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 25 yrs             | Time to peak      | = 5 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 4,064 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.9        |
| Intensity       | = 6.488 in/hr        | Tc by User        | = 5.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 3

**Routed Pond** 

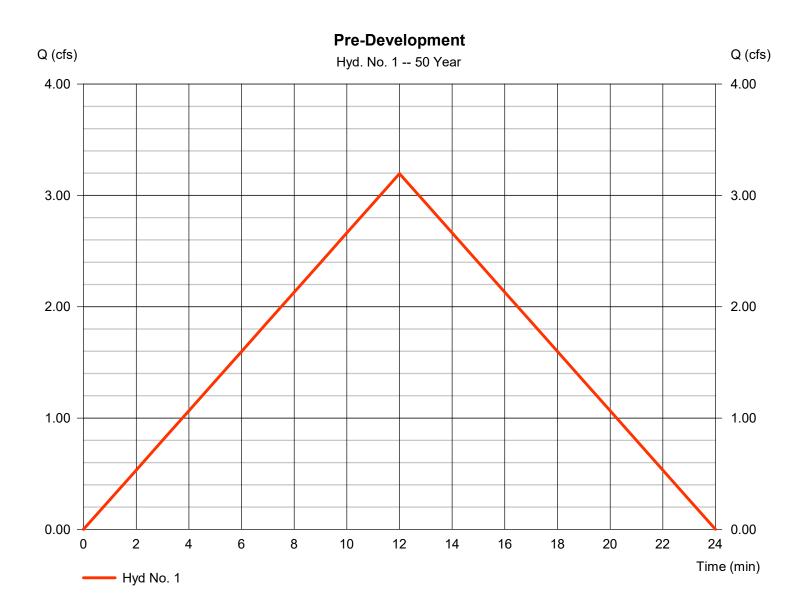
| Hydrograph type | = Reservoir            | Peak discharge | = 2.289 cfs  |
|-----------------|------------------------|----------------|--------------|
| Storm frequency | = 25 yrs               | Time to peak   | = 9 min      |
| Time interval   | = 1 min                | Hyd. volume    | = 2,989 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 486.69 ft  |
| Reservoir name  | = Underground Pond 2   | Max. Storage   | = 3,508 cuft |

Storage Indication method used.



## Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

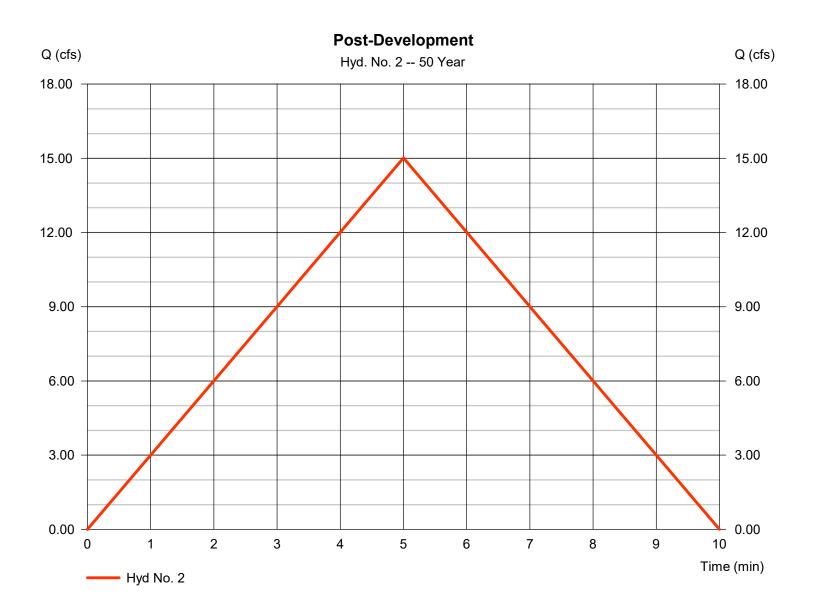

| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s)  | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description       |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|-------------------|------------------------------|-------------------------------|---------------------------------|
| 1           | Rational                       | 3.196                 | 1                         | 12                       | 2,301                    |                   |                              |                               | Pre-Development                 |
| 2           | Rational                       | 15.01                 | 1                         | 5                        | 4,504                    |                   |                              |                               | Post-Development                |
| 2<br>3      | Reservoir                      | 15.01<br>2.494        | 1                         | 9                        | 4,504<br>3,429           | 2                 | 487.04                       | 3,867                         | Post-Development<br>Routed Pond |
|             |                                |                       |                           |                          |                          |                   |                              |                               |                                 |
|             |                                |                       |                           |                          |                          |                   |                              |                               |                                 |
| Mill        | burry Pond 2                   | .gpw                  |                           |                          | Return                   | ר<br>Period: 50 א | /ear                         | Monday, 04                    | 4 / 13 / 2020                   |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 1

Pre-Development

| Hydrograph type | = Rational           | Peak discharge    | = 3.196 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 50 yrs             | Time to peak      | = 12 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 2,301 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.25       |
| Intensity       | = 5.510 in/hr        | Tc by TR55        | = 12.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

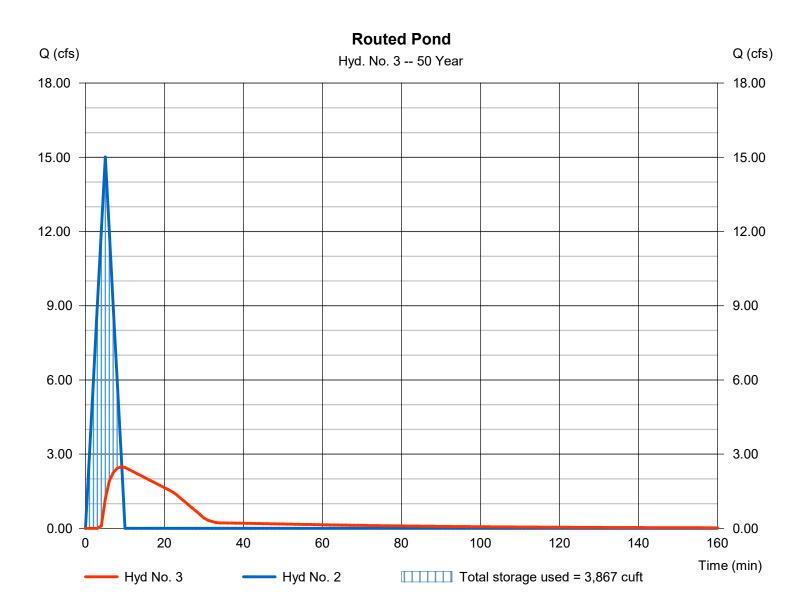
## Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 15.01 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 50 yrs             | Time to peak      | = 5 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 4,504 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.9        |
| Intensity       | = 7.191 in/hr        | Tc by User        | = 5.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |



20


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 3

**Routed Pond** 

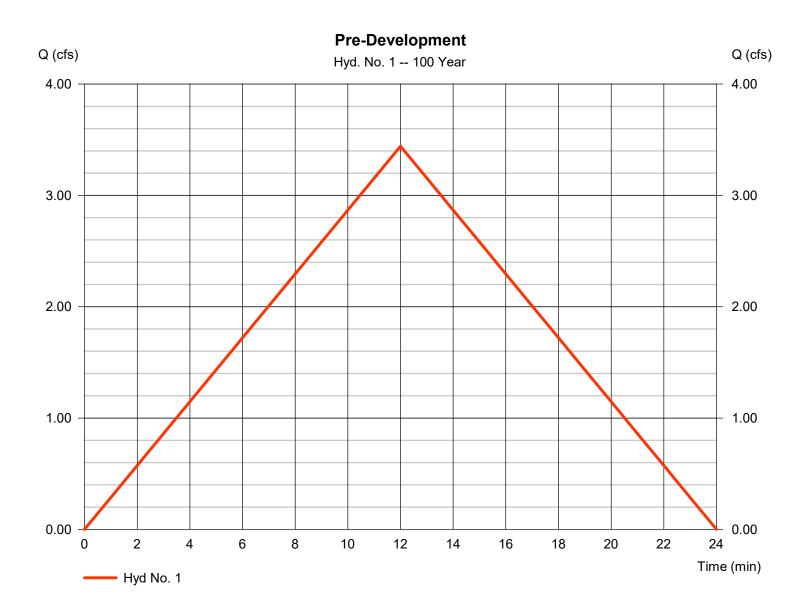
| ervoir Peak          | k discharge = 2.494 cfs                   |
|----------------------|-------------------------------------------|
| rs Time              | e to peak = 9 min                         |
| n Hyd.               | volume = 3,429 cuft                       |
| ost-Development Max. | Elevation = 487.04 ft                     |
| erground Pond 2 Max. | Storage = 3,867 cuft                      |
|                      | rs Time<br>n Hyd.<br>ost-Development Max. |

Storage Indication method used.



## Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020


| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description       |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------------|
| 1           | Rational                       | 3.442                 | 1                         | 12                       | 2,478                    |                  |                              |                               | Pre-Development                 |
| 2           | Rational                       | 16.68                 | 1                         | 5                        | 5,004                    |                  |                              |                               | Post-Development                |
| 2 3         | Reservoir                      | 16.68                 |                           | 59                       | 5,004<br>3,929           | 2                | 487.44                       | 4,288                         | Post-Development<br>Routed Pond |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                                 |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                                 |
| Mill        | burry Pond 2                   | .qpw                  |                           | 1                        | Return                   | Period: 100      | Year                         | Monday. 04                    | 4 / 13 / 2020                   |

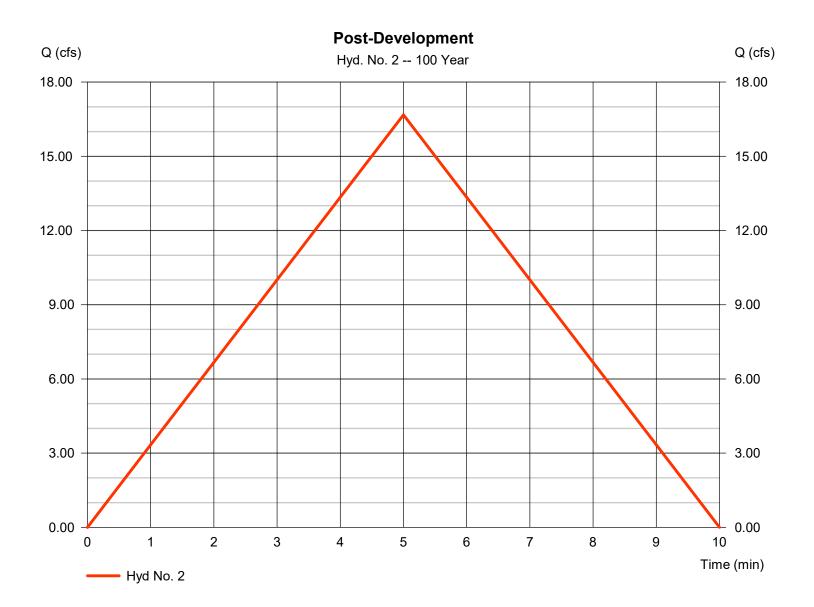
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 1

Pre-Development

| Hydrograph type | = Rational           | Peak discharge    | = 3.442 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 100 yrs            | Time to peak      | = 12 min     |
| Time interval   | = 1 min              | Hyd. volume       | = 2,478 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.25       |
| Intensity       | = 5.934 in/hr        | Tc by TR55        | = 12.00 min  |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




23

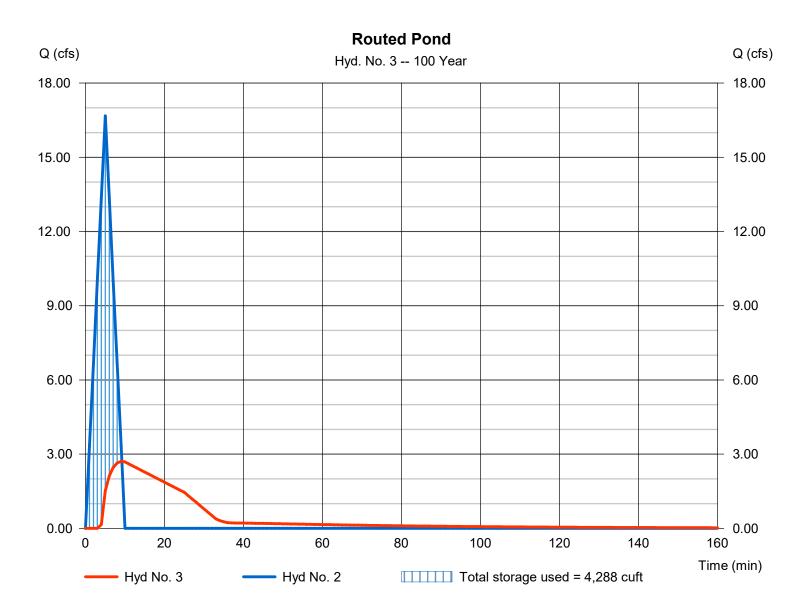
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 2

Post-Development

| Hydrograph type | = Rational           | Peak discharge    | = 16.68 cfs  |
|-----------------|----------------------|-------------------|--------------|
| Storm frequency | = 100 yrs            | Time to peak      | = 5 min      |
| Time interval   | = 1 min              | Hyd. volume       | = 5,004 cuft |
| Drainage area   | = 2.320 ac           | Runoff coeff.     | = 0.9        |
| Intensity       | = 7.988 in/hr        | Tc by User        | = 5.00 min   |
| IDF Curve       | = Millbury Storm.IDF | Asc/Rec limb fact | = 1/1        |
|                 |                      |                   |              |




Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

## Hyd. No. 3

**Routed Pond** 

| Hydrograph type | = Reservoir            | Peak discharge | = 2.715 cfs  |
|-----------------|------------------------|----------------|--------------|
| Storm frequency | = 100 yrs              | Time to peak   | = 9 min      |
| Time interval   | = 1 min                | Hyd. volume    | = 3,929 cuft |
| Inflow hyd. No. | = 2 - Post-Development | Max. Elevation | = 487.44 ft  |
| Reservoir name  | = Underground Pond 2   | Max. Storage   | = 4,288 cuft |

Storage Indication method used.



## **Hydraflow Rainfall Report**

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

| Return<br>Period<br>(Yrs) | Intensity-Duration-Frequency Equation Coefficients (FHA) |         |        |       |  |  |  |  |  |
|---------------------------|----------------------------------------------------------|---------|--------|-------|--|--|--|--|--|
|                           | В                                                        | D       | E      | (N/A) |  |  |  |  |  |
| 1                         | 56.1571                                                  | 12.6000 | 0.8599 |       |  |  |  |  |  |
| 2                         | 21.4950                                                  | 5.3000  | 0.6807 |       |  |  |  |  |  |
| 3                         | 0.0000                                                   | 0.0000  | 0.0000 |       |  |  |  |  |  |
| 5                         | 64.6694                                                  | 13.4000 | 0.7859 |       |  |  |  |  |  |
| 10                        | 34.7603                                                  | 8.6000  | 0.7433 |       |  |  |  |  |  |
| 25                        | 33.1106                                                  | 7.0000  | 0.6559 |       |  |  |  |  |  |
| 50                        | 56.6539                                                  | 11.2000 | 0.7412 |       |  |  |  |  |  |
| 100                       | 34.5085                                                  | 6.1000  | 0.6079 |       |  |  |  |  |  |

File name: Millbury Storm.IDF

#### Intensity = B / (Tc + D)^E

| Return          |       |      |      |      | Intens | sity Values | (in/hr) |      |      |      |      |      |
|-----------------|-------|------|------|------|--------|-------------|---------|------|------|------|------|------|
| Period<br>(Yrs) | 5 min | 10   | 15   | 20   | 25     | 30          | 35      | 40   | 45   | 50   | 55   | 60   |
| 1               | 4.77  | 3.85 | 3.24 | 2.81 | 2.48   | 2.23        | 2.03    | 1.86 | 1.72 | 1.60 | 1.50 | 1.41 |
| 2               | 4.39  | 3.36 | 2.77 | 2.38 | 2.11   | 1.90        | 1.74    | 1.60 | 1.49 | 1.40 | 1.32 | 1.25 |
| 3               | 0.00  | 0.00 | 0.00 | 0.00 | 0.00   | 0.00        | 0.00    | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 5               | 6.56  | 5.43 | 4.66 | 4.10 | 3.68   | 3.34        | 3.07    | 2.84 | 2.64 | 2.48 | 2.34 | 2.21 |
| 10              | 4.99  | 3.96 | 3.32 | 2.87 | 2.55   | 2.30        | 2.10    | 1.94 | 1.80 | 1.69 | 1.59 | 1.50 |
| 25              | 6.49  | 5.16 | 4.36 | 3.81 | 3.41   | 3.10        | 2.85    | 2.65 | 2.48 | 2.33 | 2.21 | 2.10 |
| 50              | 7.19  | 5.89 | 5.04 | 4.42 | 3.96   | 3.60        | 3.31    | 3.06 | 2.86 | 2.68 | 2.53 | 2.40 |
| 100             | 7.99  | 6.37 | 5.41 | 4.75 | 4.27   | 3.90        | 3.60    | 3.36 | 3.16 | 2.98 | 2.83 | 2.70 |
|                 |       |      |      |      |        |             |         |      |      |      |      |      |

Tc = time in minutes. Values may exceed 60.

|                       |      | Rainfall Precipitation Table (in) |      |      |       |       |       |        |  |
|-----------------------|------|-----------------------------------|------|------|-------|-------|-------|--------|--|
| Storm<br>Distribution | 1-yr | 2-yr                              | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |  |
| SCS 24-hour           | 0.00 | 3.90                              | 0.00 | 0.00 | 5.65  | 6.78  | 9.60  | 8.00   |  |
| SCS 6-Hr              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |
| Huff-1st              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |
| Huff-2nd              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |
| Huff-3rd              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |
| Huff-4th              | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |
| Huff-Indy             | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |
| Custom                | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |

Precip. file name: D:\My stuff\Ozark Beach Vollyball\Storm Design\Ozark.pcp

## Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2020

| Watershed Model Schematic      | . 1 |
|--------------------------------|-----|
| Hydrograph Return Period Recap | 2   |

## 2 - Year

| Summary Report                               | 3 |
|----------------------------------------------|---|
| Hydrograph Reports                           |   |
| Hydrograph No. 1, Rational, Pre-Development  |   |
| TR-55 Tc Worksheet                           |   |
| Hydrograph No. 2, Rational, Post-Development | 6 |
| Hydrograph No. 3, Reservoir, Routed Pond     | 7 |
| Pond Report - Underground Pond 2             |   |

## 10 - Year

| 10   |
|------|
| 11   |
| . 11 |
| 12   |
| . 13 |
| •    |

## 25 - Year

| Summary Report                               | 14 |
|----------------------------------------------|----|
| Hydrograph Reports                           |    |
| Hydrograph No. 1, Rational, Pre-Development  |    |
| Hydrograph No. 2, Rational, Post-Development | 16 |
| Hydrograph No. 3, Reservoir, Routed Pond     | 17 |

## 50 - Year

| Summary Report                               | 18 |
|----------------------------------------------|----|
| Hydrograph Reports                           |    |
| Hydrograph No. 1, Rational, Pre-Development  |    |
| Hydrograph No. 2, Rational, Post-Development |    |
| Hydrograph No. 3, Reservoir, Routed Pond     |    |

## 100 - Year

| Hydrograph Reports<br>Hydrograph No. 1, Rational, Pre-Development |    |
|-------------------------------------------------------------------|----|
| Hydrograph No. 2, Rational, Post-Development                      |    |
| Hydrograph No. 3, Reservoir, Routed Pond                          |    |
|                                                                   | Zv |
| IDF Report                                                        | 26 |

# APPENDIX 5 Pipe Sizing

### **Project Description**

| File Name |                    |  |
|-----------|--------------------|--|
| The Mame  | <br>MILLDUITT.SI T |  |

### **Project Options**

| Flow Units<br>Elevation Type<br>Hydrology Method<br>Time of Concentration (TOC) Method<br>Link Routing Method<br>Enable Overflow Ponding at Nodes<br>Skip Steady State Analysis Time Periods | Elevation<br>Rational<br>User-Defined<br>Kinematic Wave<br>YES |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|

### **Analysis Options**

| Start Analysis On              | . Apr 11, 2020 | 00:00:00      |
|--------------------------------|----------------|---------------|
| End Analysis On                | Apr 12, 2020   | 00:00:00      |
| Start Reporting On             | . Apr 11, 2020 | 00:00:00      |
| Antecedent Dry Days            | . 0            | days          |
| Runoff (Dry Weather) Time Step | 0 01:00:00     | days hh:mm:ss |
| Runoff (Wet Weather) Time Step | 0 00:05:00     | days hh:mm:ss |
| Reporting Time Step            | . 0 00:05:00   | days hh:mm:ss |
| Routing Time Step              | . 30           | seconds       |

#### Number of Elements

|                 | Qty |
|-----------------|-----|
| Rain Gages      | 0   |
| Subbasins       | 11  |
| Nodes           | 25  |
| Junctions       | 8   |
| Outfalls        | 6   |
| Flow Diversions | 0   |
| Inlets          | 11  |
| Storage Nodes   | 0   |
| Links           | 27  |
| Channels        | 8   |
| Pipes           | 19  |
| Pumps           | 0   |
| Orifices        | 0   |
| Weirs           | 0   |
| Outlets         | 0   |
| Pollutants      | 0   |
| Land Uses       | 0   |
|                 |     |

#### **Rainfall Details**

Return Period...... 10 year(s)

## Subbasin Summary

| SN | Subbasin | Area | Weighted    | Total    | Total  | Total   | Peak   | Time of         |
|----|----------|------|-------------|----------|--------|---------|--------|-----------------|
|    | ID       |      | Runoff      | Rainfall | Runoff | Runoff  | Runoff | Concentration   |
|    |          |      | Coefficient |          |        | Volume  |        |                 |
|    |          | (ac) |             | (in)     | (in)   | (ac-in) | (cfs)  | (days hh:mm:ss) |
| 1  | BASINA1  | 1.93 | 0.3300      | 1.52     | 0.50   | 0.97    | 2.89   | 0 00:20:00      |
| 2  | BASINA3  | 0.61 | 0.9000      | 0.42     | 0.38   | 0.23    | 2.75   | 0 00:05:00      |
| 3  | BASINB1  | 2.03 | 0.3800      | 1.52     | 0.58   | 1.17    | 3.51   | 0 00:20:00      |
| 4  | BASINB2  | 0.36 | 0.9000      | 0.42     | 0.38   | 0.14    | 1.62   | 0 00:05:00      |
| 5  | BASIND1  | 0.06 | 0.9000      | 0.42     | 0.38   | 0.02    | 0.27   | 0 00:05:00      |
| 6  | BASIND2  | 0.16 | 0.9000      | 0.42     | 0.38   | 0.06    | 0.72   | 0 00:05:00      |
| 7  | BASINE1  | 0.19 | 0.9000      | 0.42     | 0.38   | 0.07    | 0.86   | 0 00:05:00      |
| 8  | BASINE2  | 0.34 | 0.9000      | 0.42     | 0.38   | 0.13    | 1.53   | 0 00:05:00      |
| 9  | BASINF1  | 0.39 | 0.9000      | 0.42     | 0.38   | 0.15    | 1.76   | 0 00:05:00      |
| 10 | BASINF2  | 0.17 | 0.9000      | 0.42     | 0.38   | 0.06    | 0.77   | 0 00:05:00      |
| 11 | BASING1  | 0.42 | 0.9000      | 0.42     | 0.38   | 0.16    | 1.89   | 0 00:05:00      |

## Node Summary

|    | Element<br>ID    | Element<br>Type | Invert<br>Elevation | Ground/Rim<br>(Max) | Water     | Surcharge<br>Elevation |       |       | Elevation | Max<br>Surcharge |          |              | Flooded | Total Time<br>Flooded |
|----|------------------|-----------------|---------------------|---------------------|-----------|------------------------|-------|-------|-----------|------------------|----------|--------------|---------|-----------------------|
|    |                  |                 |                     | Elevation           | Elevation |                        |       |       | Attained  | Depth            | Attained | Flooding     | Volume  |                       |
|    |                  |                 |                     |                     |           |                        |       |       |           | Attained         |          | Occurrence   |         |                       |
|    |                  |                 | (ft)                | (ft)                | (ft)      | (ft)                   | (ft²) | (cfs) | (ft)      | (ft)             | (ft)     | (days hh:mm) | (ac-in) | (min)                 |
| 1  | A2               | Junction        | 513.60              | 515.93              | 513.24    | 515.93                 | 10.00 | 4.44  | 514.20    | 0.00             | 1.73     | 0 00:00      | 0.00    | 0.00                  |
| 2  | C1               | Junction        | 513.00              | 519.00              | 513.00    | 519.00                 | 10.00 | 4.14  | 513.40    | 0.00             | 5.60     | 0 00:00      | 0.00    | 0.00                  |
| 3  | C2               | Junction        | 498.00              | 516.18              | 498.00    | 516.18                 | 10.00 | 4.14  | 512.40    | 0.00             | 3.78     | 0 00:00      | 0.00    | 0.00                  |
| 4  | C3               | Junction        | 490.00              | 500.19              | 490.00    | 500.19                 | 10.00 | 4.14  | 495.47    | 0.00             | 4.72     | 0 00:00      | 0.00    | 0.00                  |
| 5  | C4               | Junction        | 488.62              | 493.81              | 488.62    | 493.81                 | 10.00 | 4.14  | 489.28    | 0.00             | 4.54     | 0 00:00      | 0.00    | 0.00                  |
| 6  | D3               | Junction        | 485.94              | 493.50              | 485.94    | 493.50                 | 10.00 | 3.20  | 486.40    | 0.00             | 7.09     | 0 00:00      | 0.00    | 0.00                  |
| 7  | D4               | Junction        | 484.50              | 488.64              | 484.50    | 488.64                 | 0.00  | 7.46  | 485.35    | 0.00             | 3.29     | 0 00:00      | 0.00    | 0.00                  |
| 8  | H1               | Junction        | 483.59              | 487.95              | 483.59    | 0.00                   | 10.00 | 2.72  | 483.87    | 0.00             | 4.08     | 0 00:00      | 0.00    | 0.00                  |
| 9  | EXISTINGINLET    | Outfall         | 480.77              |                     |           |                        |       | 2.72  | 481.04    |                  |          |              |         |                       |
| 10 | INTODET1         | Outfall         | 513.00              |                     |           |                        |       | 5.18  | 513.61    |                  |          |              |         |                       |
| 11 | INTODET2         | Outfall         | 484.50              |                     |           |                        |       | 7.46  | 485.25    |                  |          |              |         |                       |
| 12 | Out-02           | Outfall         | 495.00              |                     |           |                        |       | 0.00  | 495.00    |                  |          |              |         |                       |
| 13 | Out-03           | Outfall         | 0.00                |                     |           |                        |       | 0.00  | 0.00      |                  |          |              |         |                       |
| 14 | Out-1Pipe - (51) | Outfall         | 488.00              |                     |           |                        |       | 4.14  | 488.65    |                  |          |              |         |                       |

## Link Summary

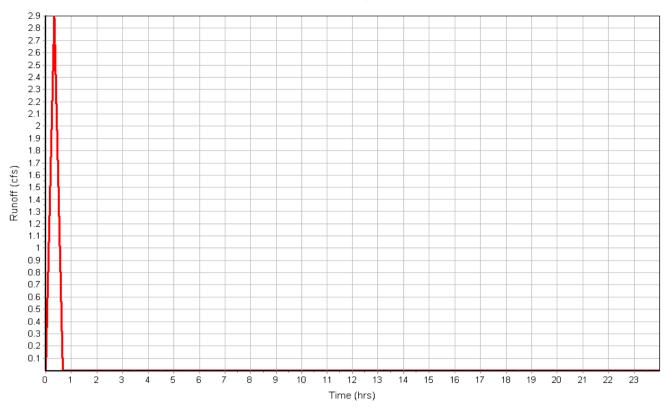
| SN Element          |         |      | To (Outlet)      | Length | Inlet       |          |         | Diameter or |           |       | Design Flow |             |          |       |                      | Total Time Reported  |
|---------------------|---------|------|------------------|--------|-------------|----------|---------|-------------|-----------|-------|-------------|-------------|----------|-------|----------------------|----------------------|
| ID                  | Туре    | • •  | Node             |        | Invert      | Invert   | Slope   | Height      | Roughness | FIOW  | Capacity    | Design Flow | Velocity | Depth |                      | Surcharged Condition |
|                     |         | Node |                  | 1      | Elevation E | levation |         |             |           |       |             | Ratio       |          |       | Total Depth<br>Ratio |                      |
|                     |         |      |                  | (ft)   | (ft)        | (ft)     | (%)     | (in)        |           | (cfs) | (cfs)       |             | (ft/sec) | (ft)  | Ratio                | (min)                |
| 1 PIPEA1-A2         | Pipe    | A1   | A2               | 42.00  | 516.00      | 513.60   | 5.7100  | 15.000      | 0.0120    | 1.12  | 16.73       | 0.07        | 7.70     | 0.22  | 0.18                 | 0.00 Calculated      |
| 2 PIPEA2-A3         | Pipe    | A2   | A3               | 19.00  | 513.60      | 513.24   | 1.8900  | 15.000      | 0.0120    | 4.44  | 9.63        | 0.46        | 7.69     | 0.60  | 0.48                 | 0.00 Calculated      |
| 3 PIPEA3-DETENTION1 | Pipe    | A3   | INTODET1         | 10.00  | 513.24      | 513.00   | 2.4000  | 15.000      | 0.0120    | 5.18  | 10.84       | 0.48        | 8.73     | 0.61  | 0.49                 | 0.00 Calculated      |
| 4 PIPEB1-B2         | Pipe    | B1   | B2               | 102.00 | 518.73      | 516.62   | 2.0600  | 15.000      | 0.0120    | 2.35  | 10.05       | 0.23        | 7.26     | 0.41  | 0.33                 | 0.00 Calculated      |
| 5 PIPEB2-A2         | Pipe    | B2   | A2               | 264.00 | 516.42      | 513.60   | 1.0700  | 15.000      | 0.0120    | 3.33  | 7.23        | 0.46        | 5.80     | 0.60  | 0.48                 | 0.00 Calculated      |
| 6 PIPEC1-C2         | Pipe    | C1   | C2               | 14.00  | 513.00      | 512.00   | 7.1400  | 15.000      | 0.0120    | 4.14  | 18.70       | 0.22        | 12.24    | 0.40  | 0.32                 | 0.00 Calculated      |
| 7 PIPEC2-C3         | Pipe    | C2   | C3               | 80.00  | 498.00      | 495.00   | 3.7500  | 15.000      | 0.0120    | 4.14  | 13.55       | 0.31        | 9.70     | 0.47  | 0.38                 | 0.00 Calculated      |
| 8 PIPEC3-C4         | Pipe    | C3   | C4               | 116.00 | 490.00      | 488.62   | 1.1900  | 15.000      | 0.0120    | 4.14  | 7.63        | 0.54        | 6.34     | 0.66  | 0.52                 | 0.00 Calculated      |
| 9 PIPEC4-OUTLET     | Pipe    | C4   | Out-1Pipe - (51) | 50.00  | 488.62      | 488.00   | 1.2400  | 15.000      | 0.0120    | 4.14  | 7.79        | 0.53        | 6.44     | 0.65  | 0.52                 | 0.00 Calculated      |
| 10 PIPED1-D2        | Pipe    | D1   | D2               | 16.00  | 495.73      | 495.54   | 1.1900  | 15.000      | 0.0120    | 0.27  | 7.63        | 0.04        | 3.03     | 0.16  | 0.13                 | 0.00 Calculated      |
| 11 PIPED2-D3        | Pipe    | D2   | D3               | 72.00  | 486.68      | 485.94   | 1.0400  | 15.000      | 0.0120    | 1.73  | 7.11        | 0.24        | 4.78     | 0.42  | 0.34                 | 0.00 Calculated      |
| 12 PIPED3-D4        | Pipe    | D3   | D4               | 55.00  | 485.94      | 484.60   | 2.4400  | 15.000      | 0.0120    | 3.20  | 10.92       | 0.29        | 7.74     | 0.46  | 0.37                 | 0.00 Calculated      |
| 13 PIPED4-DET2      | Pipe    | D4   | INTODET2         | 2.50   | 484.60      | 484.50   | 4.0000  | 15.000      | 0.0150    | 7.46  | 11.20       | 0.67        | 9.76     | 0.75  | 0.60                 | 0.00 Calculated      |
| 14 PIPEE1-E2        | Pipe    | E1   | E2               | 120.00 | 496.80      | 489.30   | 6.2500  | 15.000      | 0.0120    | 0.83  | 17.50       | 0.05        | 10.13    | 0.18  | 0.15                 | 0.00 Calculated      |
| 15 PIPEE2-D3        | Pipe    | E2   | D3               | 76.00  | 487.51      | 485.94   | 2.0700  | 15.000      | 0.0120    | 2.17  | 10.06       | 0.22        | 6.56     | 0.39  | 0.31                 | 0.00 Calculated      |
| 16 PIPEF1-F2        | Pipe    | F1   | F2               | 46.00  | 490.00      | 487.50   | 5.4300  | 15.000      | 0.0120    | 1.45  | 16.31       | 0.09        | 9.23     | 0.25  | 0.20                 | 0.00 Calculated      |
| 17 PIPEF2-D4        | Pipe    | F2   | D4               | 96.00  | 487.30      | 484.60   | 2.8100  | 15.000      | 0.0120    | 2.38  | 11.74       | 0.20        | 7.51     | 0.38  | 0.31                 | 0.00 Calculated      |
| 18 PIPEG1-D4        | Pipe    | G1   | D4               | 28.00  | 485.00      | 484.60   | 1.4300  | 15.000      | 0.0120    | 1.93  | 8.36        | 0.23        | 5.55     | 0.41  | 0.33                 | 0.00 Calculated      |
| 19 PIPEH1-EXINLET   | Pipe    | H1   | EXISTINGINLET    | 21.00  | 483.59      | 480.77   | 13.4300 | 15.000      | 0.0120    | 2.72  | 25.65       | 0.11        | 13.60    | 0.27  | 0.22                 | 0.00 Calculated      |
| 20 BYPASSA1-D2      | Channel |      | D2               | 203.07 | 516.00      | 486.68   | 14.4400 | 6.000       | 0.0320    |       | 22.25       | 0.08        | 3.99     | 0.18  | 0.36                 | 0.00                 |
| 21 BYPASSB1-B2      | Channel | B1   | B2               | 115.48 | 518.73      | 516.42   | 2.0000  | 6.000       | 0.0320    | 1.11  | 7.52        | 0.15        | 1.38     | 0.22  | 0.45                 | 0.00                 |
| 22 BYPASSB2-A3      | Channel | B2   | A3               | 288.00 | 516.42      | 513.00   | 1.1900  | 6.000       | 0.0320    | 0.14  | 8.78        | 0.02        | 1.89     | 0.09  | 0.18                 | 0.00                 |
| 23 BYPASSD1-ROAD    | Channel | D1   | Out-02           | 13.48  | 497.00      | 495.00   | 14.8400 | 6.000       | 0.0320    | 0.00  | 32.15       | 0.00        | 0.00     | 0.00  | 0.00                 | 0.00                 |
| 24 BYPASSE1-E2      | Channel | E1   | E2               | 132.58 | 496.80      | 487.51   | 7.0100  | 6.000       | 0.0320    | 0.01  | 16.81       | 0.00        | 2.19     | 0.03  | 0.06                 | 0.00                 |
| 25 BYPASSE2-G1      | Channel |      | G1               | 97.68  | 487.51      | 485.00   | 2.5700  | 6.000       | 0.0320    | 0.13  | 15.40       | 0.01        | 2.67     | 0.07  | 0.15                 | 0.00                 |
| 26 BYPASSF1-F2      | Channel |      | F2               | 59.26  | 490.00      | 487.30   | 4.5600  | 6.000       | 0.0320    | 0.26  | 14.07       | 0.02        | 2.40     | 0.10  | 0.21                 | 0.00                 |
| 27 BYPASSF2-G1      | Channel | F2   | G1               | 137.86 | 487.30      | 485.00   | 1.6700  | 6.000       | 0.0320    | 0.02  | 10.20       | 0.00        | 1.38     | 0.04  | 0.07                 | 0.00                 |

### Inlet Summary

| SN Element<br>ID | Inlet<br>Manufacturer | Manufacturer<br>Part | Inlet<br>Location | Number of<br>Inlets | Catchbasin<br>Invert | ,      | Initial<br>Water | Ponded |       |       | Peak Flow | Inlet<br>Efficiencv | Allowable<br>Spread | Max Gutter  | Max Gutter<br>Water Elev. |
|------------------|-----------------------|----------------------|-------------------|---------------------|----------------------|--------|------------------|--------|-------|-------|-----------|---------------------|---------------------|-------------|---------------------------|
| U                | Manuacturer           | Number               | LUCATION          | mets                | Elevation            |        | Elevation        | Alea   | FIOW  | by    |           | during Peak         |                     | during Peak |                           |
|                  |                       | Number               |                   |                     | Lievation            |        |                  |        |       | Inlet | IIIICI    | Flow                |                     | Flow        | Flow                      |
|                  |                       |                      |                   |                     | (ft)                 | (ft)   | (ft)             | (ft²)  | (cfs) | (cfs) | (cfs)     | (%)                 | (ft)                | (ft)        | (ft)                      |
| 1 A1             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 516.00               | 519.44 | 516.00           | N/A    | 2.89  | 1.12  | 1.78      | 38.61               | 7.00                | 2.25        | 519.61                    |
| 2 A3             | FHWA HEC-22 GENERIC   | N/A                  | On Sag            | 1                   | 513.24               | 516.72 | 0.00             | 0.00   | 2.74  | N/A   | N/A       | N/A                 | 7.00                | 13.12       | 517.23                    |
| 3 B1             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 518.73               | 522.35 | 518.73           | N/A    | 3.51  | 2.36  | 1.15      | 67.27               | 7.00                | 7.44        | 522.60                    |
| 4 B2             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 516.42               | 521.07 | 516.42           | N/A    | 1.62  | 1.38  | 0.24      | 85.18               | 7.00                | 4.81        | 521.27                    |
| 5 D1             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 495.73               | 497.73 | 495.73           | N/A    | 0.27  | 0.27  | 0.00      | 100.00              | 7.00                | 1.00        | 497.79                    |
| 6 D2             | FHWA HEC-22 GENERIC   | N/A                  | On Sag            | 1                   | 486.68               | 499.73 | 486.68           | 10.00  | 1.73  | N/A   | N/A       | N/A                 | 7.00                | 4.91        | 500.08                    |
| 7 E1             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 496.80               | 499.88 | 496.80           | N/A    | 0.85  | 0.84  | 0.02      | 97.89               | 7.00                | 2.18        | 500.02                    |
| 8 E2             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 487.51               | 492.54 | 487.51           | N/A    | 1.53  | 1.36  | 0.17      | 89.01               | 7.00                | 2.43        | 492.71                    |
| 9 F1             | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 490.00               | 493.11 | 490.00           | N/A    | 1.75  | 1.45  | 0.30      | 82.79               | 7.00                | 6.94        | 493.28                    |
| 10 F2            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 487.30               | 490.81 | 487.30           | N/A    | 0.97  | 0.95  | 0.02      | 97.96               | 7.00                | 2.66        | 490.97                    |
| 11 G1            | FHWA HEC-22 GENERIC   | N/A                  | On Sag            | 1                   | 485.00               | 488.00 | 485.00           | 10.00  | 1.94  | N/A   | N/A       | N/A                 | 7.00                | 9.80        | 488.37                    |

### Subbasin Hydrology

#### Subbasin : BASINA1


#### Input Data

Area (ac) ...... 1.93 Weighted Runoff Coefficient ...... 0.3300

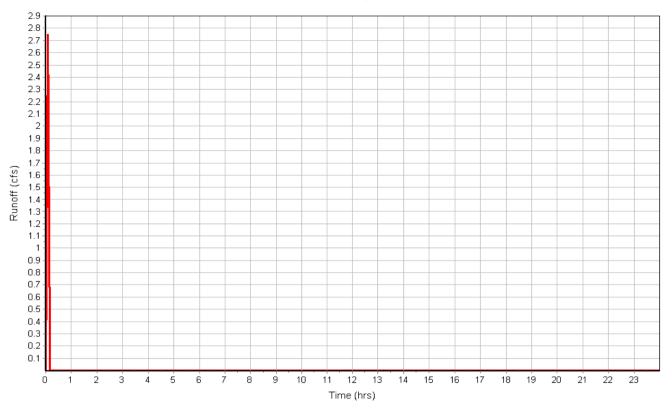
#### Runoff Coefficient

| non Coemcient                           |         |       |        |
|-----------------------------------------|---------|-------|--------|
|                                         | Area    | Soil  | Runoff |
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.36    | -     | 0.90   |
| -                                       | 1.57    | -     | 0.20   |
| Composite Area & Weighted Runoff Coeff. | 1.93    |       | 0.33   |

| Total Rainfall (in)                   | 1.52       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.50       |
| Peak Runoff (cfs)                     | 2.89       |
| Rainfall Intensity                    | 4.544      |
| Weighted Runoff Coefficient           | 0.3300     |
| Time of Concentration (days hh:mm:ss) | 0 00:20:00 |



#### Subbasin : BASINA3


#### Input Data

| Area (ac)                   | 0.61   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.61    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.61    |       | 0.90   |

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 2.75       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASINB1

#### Input Data

| Area (ac)                   | 2.03   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.3800 |

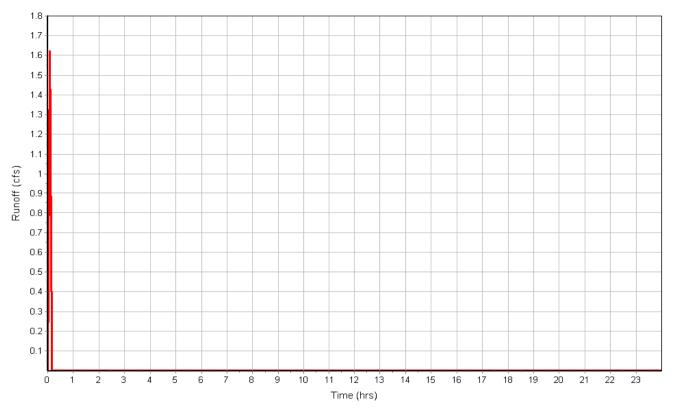
#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.51    | -     | 0.90   |
| -                                       | 1.52    | -     | 0.20   |
| Composite Area & Weighted Runoff Coeff. | 2.03    |       | 0.38   |

| Total Rainfall (in)                   | 1.52       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.58       |
| Peak Runoff (cfs)                     | 3.51       |
| Rainfall Intensity                    | 4.544      |
| Weighted Runoff Coefficient           | 0.3800     |
| Time of Concentration (days hh:mm:ss) | 0 00:20:00 |

#### 3.8 3.6 3.4 -3.2 З 2.8 2.6 2.4 2.2-Runoff (cfs) 2-1.8-1.6 1.4 1.2 -1 0.8 0.6 0.4 -0.2 5 6 ź 8 ģ 10 11 12 13 Ó 1 ż з 4 14 15 16 17 18 19 20 21 22 23 Time (hrs)

#### Subbasin : BASINB2


#### Input Data

| Area (ac)                   | 0.36   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

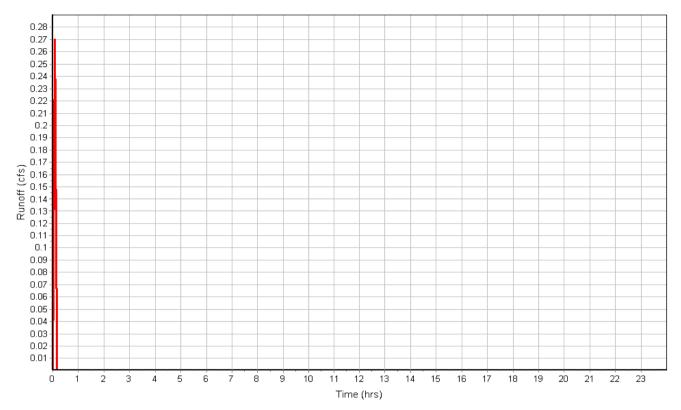
#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.36    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.36    |       | 0.90   |

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 1.62       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASIND1


#### Input Data

| Area (ac)                   | 0.06   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

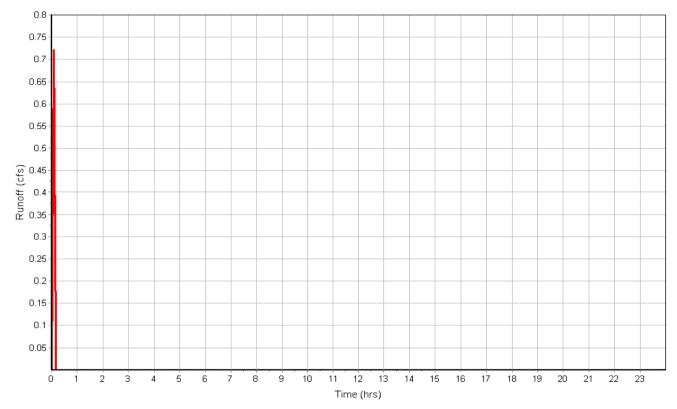
#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.06    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.06    |       | 0.90   |

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 0.27       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASIND2


#### Input Data

| Area (ac)                   | 0.16   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

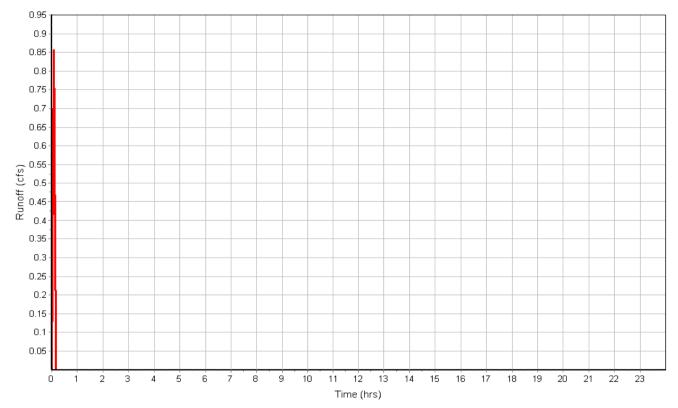
#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.16    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.16    |       | 0.90   |

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 0.72       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASINE1


#### Input Data

| Area (ac)                   | 0.19   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

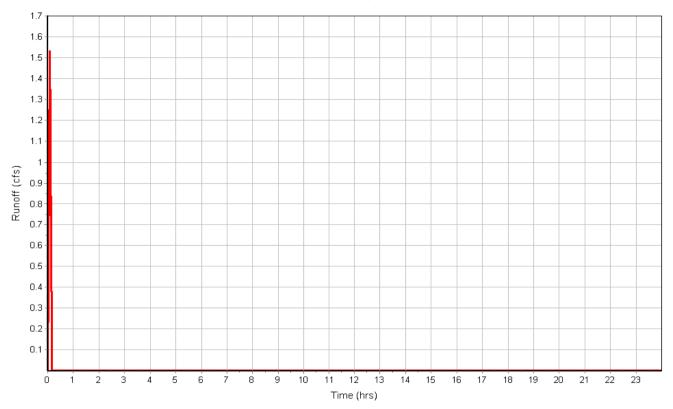
#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.19    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.19    |       | 0.90   |

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 0.86       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASINE2


#### Input Data

| Area (ac)                   | 0.34   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

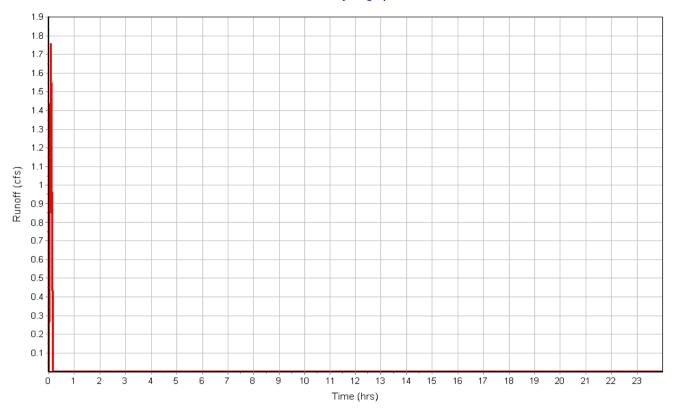
#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.34    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.34    |       | 0.90   |

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 1.53       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASINF1


#### Input Data

| Area (ac)                   | 0.39   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.39    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.39    |       | 0.90   |

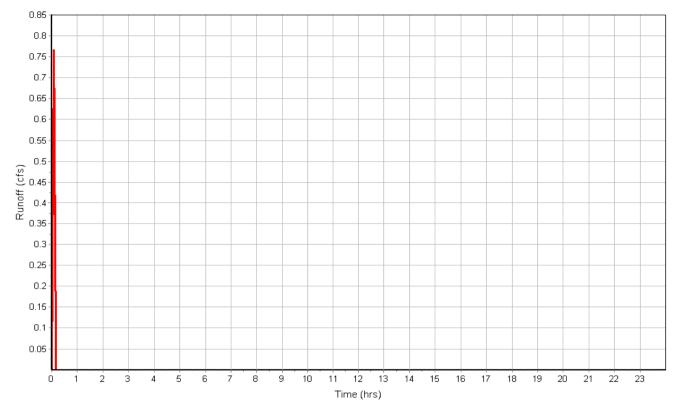
| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 1.76       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Subbasin : BASINF2

#### Input Data

| Area (ac)                   | 0.17   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |


#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.17    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.17    |       | 0.90   |

#### Subbasin Runoff Results

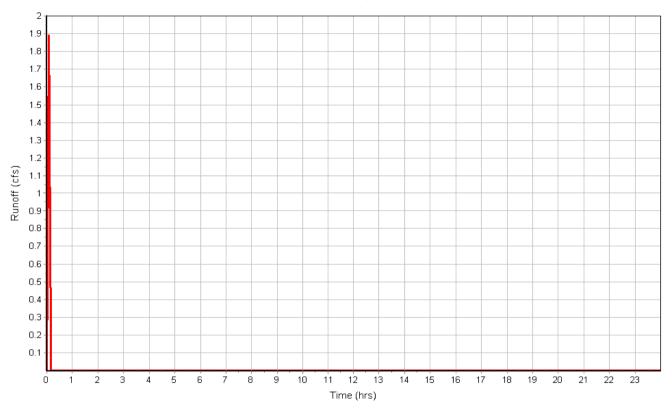
| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 0.77       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |

#### Runoff Hydrograph



#### Subbasin : BASING1

#### Input Data


| Area (ac)                   | 0.42   |
|-----------------------------|--------|
| Weighted Runoff Coefficient | 0.9000 |

#### Runoff Coefficient

|                                         | Area    | Soil  | Runoff |
|-----------------------------------------|---------|-------|--------|
| Soil/Surface Description                | (acres) | Group | Coeff. |
| -                                       | 0.42    | -     | 0.90   |
| Composite Area & Weighted Runoff Coeff. | 0.42    |       | 0.90   |

#### Subbasin Runoff Results

| Total Rainfall (in)                   | 0.42       |
|---------------------------------------|------------|
| Total Runoff (in)                     | 0.38       |
| Peak Runoff (cfs)                     | 1.89       |
| Rainfall Intensity                    | 5.000      |
| Weighted Runoff Coefficient           | 0.9000     |
| Time of Concentration (days hh:mm:ss) | 0 00:05:00 |



#### Runoff Hydrograph

#### **Junction Input**

| SN Element | Invert    | Ground/Rim | Ground/Rim | Initial   | Initial | Surcharge | Surcharge | Ponded | Minimum |
|------------|-----------|------------|------------|-----------|---------|-----------|-----------|--------|---------|
| ID         | Elevation | (Max)      | (Max)      | Water     | Water   | Elevation | Depth     | Area   | Pipe    |
|            |           | Elevation  | Offset     | Elevation | Depth   |           |           |        | Cover   |
|            | (ft)      | (ft)       | (ft)       | (ft)      | (ft)    | (ft)      | (ft)      | (ft²)  | (in)    |
| 1 A2       | 513.60    | 515.93     | 2.33       | 513.24    | -0.36   | 515.93    | 0.00      | 10.00  | 0.00    |
| 2 C1       | 513.00    | 519.00     | 6.00       | 513.00    | 0.00    | 519.00    | 0.00      | 10.00  | 0.00    |
| 3 C2       | 498.00    | 516.18     | 18.18      | 498.00    | 0.00    | 516.18    | 0.00      | 10.00  | 0.00    |
| 4 C3       | 490.00    | 500.19     | 10.19      | 490.00    | 0.00    | 500.19    | 0.00      | 10.00  | 0.00    |
| 5 C4       | 488.62    | 493.81     | 5.19       | 488.62    | 0.00    | 493.81    | 0.00      | 10.00  | 0.00    |
| 6 D3       | 485.94    | 493.50     | 7.56       | 485.94    | 0.00    | 493.50    | 0.00      | 10.00  | 0.00    |
| 7 D4       | 484.50    | 488.64     | 4.14       | 484.50    | 0.00    | 488.64    | 0.00      | 0.00   | 0.00    |
| 8 H1       | 483.59    | 487.95     | 4.36       | 483.59    | 0.00    | 0.00      | -487.95   | 10.00  | 0.00    |

#### **Junction Results**

| SN Element<br>ID | Peak<br>Inflow | Peak<br>Lateral | Max HGL<br>Elevation | Max HGL<br>Depth | Max<br>Surcharge  |          | Average HGL<br>Elevation | Average HGL<br>Depth | Time of<br>Max HGL | Time of<br>Peak        | Total<br>Flooded | Total Time<br>Flooded |
|------------------|----------------|-----------------|----------------------|------------------|-------------------|----------|--------------------------|----------------------|--------------------|------------------------|------------------|-----------------------|
|                  |                | Inflow          | Attained             | Attained         | Depth<br>Attained | Attained | Attained                 | Attained             | Occurrence         | Flooding<br>Occurrence | Volume           |                       |
|                  | (cfs)          | (cfs)           | (ft)                 | (ft)             | (ft)              | (ft)     | (ft)                     | (ft)                 | (days hh:mm)       | (days hh:mm)           | (ac-in)          | (min)                 |
| 1 A2             | 4.44           | 0.00            | 514.20               | 0.60             | 0.00              | 1.73     | 513.61                   | 0.01                 | 0 00:21            | 0 00:00                | 0.00             | 0.00                  |
| 2 C1             | 4.14           | 4.14            | 513.40               | 0.40             | 0.00              | 5.60     | 513.40                   | 0.40                 | 0 00:00            | 0 00:00                | 0.00             | 0.00                  |
| 3 C2             | 4.14           | 0.00            | 512.40               | 14.40            | 0.00              | 3.78     | 512.40                   | 14.40                | 0 00:00            | 0 00:00                | 0.00             | 0.00                  |
| 4 C3             | 4.14           | 0.00            | 495.47               | 5.47             | 0.00              | 4.72     | 495.47                   | 5.47                 | 0 00:02            | 0 00:00                | 0.00             | 0.00                  |
| 5 C4             | 4.14           | 0.00            | 489.28               | 0.66             | 0.00              | 4.54     | 489.28                   | 0.66                 | 0 00:05            | 0 00:00                | 0.00             | 0.00                  |
| 6 D3             | 3.20           | 0.00            | 486.40               | 0.46             | 0.00              | 7.09     | 485.95                   | 0.01                 | 0 00:05            | 0 00:00                | 0.00             | 0.00                  |
| 7 D4             | 7.46           | 0.00            | 485.35               | 0.85             | 0.00              | 3.29     | 484.61                   | 0.11                 | 0 00:05            | 0 00:00                | 0.00             | 0.00                  |
| 8 H1             | 2.72           | 2.72            | 483.87               | 0.28             | 0.00              | 4.08     | 483.87                   | 0.28                 | 0 00:00            | 0 00:00                | 0.00             | 0.00                  |

#### Channel Input

| SN Element<br>ID | Length | Inlet<br>Invert | Inlet<br>Invert |           | Outlet<br>Invert |       | Average<br>Slope | Shape        | Height | Width  | Manning's<br>Roughness | Entrance<br>Losses | Exit/Bend<br>Losses |        | Initial Flap<br>Flow Gate |
|------------------|--------|-----------------|-----------------|-----------|------------------|-------|------------------|--------------|--------|--------|------------------------|--------------------|---------------------|--------|---------------------------|
|                  |        | Elevation       | Offset          | Elevation | Offset           | •     |                  |              |        |        | 5                      |                    |                     |        |                           |
|                  | (ft)   | (ft)            | (ft)            | (ft)      | (ft)             | (ft)  | (%)              |              | (ft)   | (ft)   |                        |                    |                     |        | (cfs)                     |
| 1 BYPASSA1-D2    | 203.07 | 516.00          | 0.00            | 486.68    | 0.00             | 29.32 | 14.4400          | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 2 BYPASSB1-B2    | 115.48 | 518.73          | 0.00            | 516.42    | 0.00             | 2.31  | 2.0000           | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 3 BYPASSB2-A3    | 288.00 | 516.42          | 0.00            | 513.00    | -0.24            | 3.42  | 1.1900           | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 4 BYPASSD1-ROAD  | 13.48  | 497.00          | 1.27            | 495.00    | 0.00             | 2.00  | 14.8400          | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 5 BYPASSE1-E2    | 132.58 | 496.80          | 0.00            | 487.51    | 0.00             | 9.29  | 7.0100           | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 6 BYPASSE2-G1    | 97.68  | 487.51          | 0.00            | 485.00    | 0.00             | 2.51  | 2.5700           | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 7 BYPASSF1-F2    | 59.26  | 490.00          | 0.00            | 487.30    | 0.00             | 2.70  | 4.5600           | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |
| 8 BYPASSF2-G1    | 137.86 | 487.30          | 0.00            | 485.00    | 0.00             | 2.30  | 1.6700           | User-Defined | 0.500  | 10.000 | 0.0320                 | 0.5000             | 0.5000              | 0.0000 | 0.00 No                   |

#### **Channel Results**

|   | SN Element<br>ID | Peak<br>Flow | Time of<br>Peak Flow | Design Flow<br>Capacity | Peak Flow/<br>Design Flow |          |       |      |                      |       | Froude Reported<br>Number Condition |
|---|------------------|--------------|----------------------|-------------------------|---------------------------|----------|-------|------|----------------------|-------|-------------------------------------|
|   |                  |              | Occurrence           |                         | Ratio                     | ,        |       |      | Total Depth<br>Ratio | 5     |                                     |
|   |                  | (cfs)        | (days hh:mm)         | (cfs)                   |                           | (ft/sec) | (min) | (ft) | ratio                | (min) |                                     |
| _ | 1 BYPASSA1-D2    | 1.73         | 0 00:20              | 22.25                   | 0.08                      | 3.99     | 0.85  | 0.18 | 0.36                 | 0.00  |                                     |
|   | 2 BYPASSB1-B2    | 1.11         | 0 00:21              | 7.52                    | 0.15                      | 1.38     | 1.39  | 0.22 | 0.45                 | 0.00  |                                     |
|   | 3 BYPASSB2-A3    | 0.14         | 0 00:08              | 8.78                    | 0.02                      | 1.89     | 2.54  | 0.09 | 0.18                 | 0.00  |                                     |
|   | 4 BYPASSD1-ROAD  | 0.00         | 0 00:00              | 32.15                   | 0.00                      | 0.00     |       | 0.00 | 0.00                 | 0.00  |                                     |
|   | 5 BYPASSE1-E2    | 0.01         | 0 00:07              | 16.81                   | 0.00                      | 2.19     | 1.01  | 0.03 | 0.06                 | 0.00  |                                     |
|   | 6 BYPASSE2-G1    | 0.13         | 0 00:06              | 15.40                   | 0.01                      | 2.67     | 0.61  | 0.07 | 0.15                 | 0.00  |                                     |
|   | 7 BYPASSF1-F2    | 0.26         | 0 00:05              | 14.07                   | 0.02                      | 2.40     | 0.41  | 0.10 | 0.21                 | 0.00  |                                     |
|   | 8 BYPASSF2-G1    | 0.02         | 0 00:07              | 10.20                   | 0.00                      | 1.38     | 1.66  | 0.04 | 0.07                 | 0.00  |                                     |

#### Pipe Input

| SN Element<br>ID    | Length | Inlet<br>Invert<br>Elevation | Inlet<br>Invert | Invert | Invert |      | Average<br>Slope | Pipe<br>Shape | Pipe<br>Diameter or<br>Height | Pipe<br>Width | Manning's<br>Roughness | Entrance<br>Losses | Exit/Bend<br>Losses |        | Initial<br>Flow |    |
|---------------------|--------|------------------------------|-----------------|--------|--------|------|------------------|---------------|-------------------------------|---------------|------------------------|--------------------|---------------------|--------|-----------------|----|
|                     | (ft)   | (ft)                         | (ft)            | (ft)   | (ft)   | (ft) | (%)              |               | (in)                          | (in)          |                        |                    |                     |        | (cfs)           |    |
| 1 PIPEA1-A2         | 42.00  | 516.00                       | 0.00            | 513.60 | 0.00   | 2.40 | 5.7100           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 2 PIPEA2-A3         | 19.00  | 513.60                       | 0.00            | 513.24 | 0.00   | 0.36 | 1.8900           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 3 PIPEA3-DETENTION1 | 10.00  | 513.24                       | 0.00            | 513.00 | 0.00   | 0.24 | 2.4000           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 4 PIPEB1-B2         | 102.00 | 518.73                       | 0.00            | 516.62 | 0.20   | 2.11 | 2.0600           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 5 PIPEB2-A2         | 264.00 | 516.42                       | 0.00            | 513.60 | 0.00   | 2.82 | 1.0700           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 6 PIPEC1-C2         | 14.00  | 513.00                       | 0.00            | 512.00 | 14.00  | 1.00 | 7.1400           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 7 PIPEC2-C3         | 80.00  | 498.00                       | 0.00            | 495.00 | 5.00   | 3.00 | 3.7500           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 8 PIPEC3-C4         | 116.00 | 490.00                       | 0.00            | 488.62 | 0.00   | 1.38 | 1.1900           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 9 PIPEC4-OUTLET     | 50.00  | 488.62                       | 0.00            | 488.00 | 0.00   | 0.62 | 1.2400           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 10 PIPED1-D2        | 16.00  | 495.73                       | 0.00            | 495.54 | 8.86   | 0.19 | 1.1900           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 11 PIPED2-D3        | 72.00  | 486.68                       | 0.00            | 485.94 | 0.00   | 0.75 | 1.0400           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 12 PIPED3-D4        | 55.00  | 485.94                       | 0.00            | 484.60 | 0.10   | 1.34 | 2.4400           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 13 PIPED4-DET2      | 2.50   | 484.60                       | 0.10            | 484.50 | 0.00   | 0.10 | 4.0000           | CIRCULAR      | 15.000                        | 15.000        | 0.0150                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 14 PIPEE1-E2        | 120.00 | 496.80                       | 0.00            | 489.30 | 1.79   | 7.50 | 6.2500           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 15 PIPEE2-D3        | 76.00  | 487.51                       | 0.00            | 485.94 | -0.01  | 1.57 | 2.0700           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 16 PIPEF1-F2        | 46.00  | 490.00                       | 0.00            | 487.50 | 0.20   | 2.50 | 5.4300           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 17 PIPEF2-D4        | 96.00  | 487.30                       | 0.00            | 484.60 | 0.10   | 2.70 | 2.8100           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 18 PIPEG1-D4        | 28.00  | 485.00                       | 0.00            | 484.60 | 0.10   | 0.40 | 1.4300           | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |
| 19 PIPEH1-EXINLET   | 21.00  | 483.59                       | 0.00            | 480.77 | 0.00   | 2.82 | 13.4300          | CIRCULAR      | 15.000                        | 15.000        | 0.0120                 | 0.5000             | 0.5000              | 0.0000 | 0.00            | No |

No. of Barrels

#### Pipe Results

| SN Element<br>ID    | Peak<br>Flow | Time of<br>Peak Flow | Design Flow<br>Capacity | Peak Flow/<br>Design Flow | Peak Flow<br>Velocity |       |      | Peak Flow<br>Depth/ |       | Froude Reported<br>Number Condition |
|---------------------|--------------|----------------------|-------------------------|---------------------------|-----------------------|-------|------|---------------------|-------|-------------------------------------|
|                     |              | Occurrence           | - 1 3                   | Ratio                     | ,                     |       |      | Total Depth         | 5     |                                     |
|                     |              |                      |                         |                           |                       |       |      | Ratio               |       |                                     |
|                     | (cfs)        | (days hh:mm)         | (cfs)                   |                           | (ft/sec)              | (min) | (ft) |                     | (min) |                                     |
| 1 PIPEA1-A2         | 1.12         | 0 00:20              | 16.73                   | 0.07                      | 7.70                  | 0.09  | 0.22 | 0.18                | 0.00  | Calculated                          |
| 2 PIPEA2-A3         | 4.44         | 0 00:21              | 9.63                    | 0.46                      | 7.69                  | 0.04  | 0.60 | 0.48                | 0.00  | Calculated                          |
| 3 PIPEA3-DETENTION1 | 5.18         | 0 00:05              | 10.84                   | 0.48                      | 8.73                  | 0.02  | 0.61 | 0.49                | 0.00  | Calculated                          |
| 4 PIPEB1-B2         | 2.35         | 0 00:20              | 10.05                   | 0.23                      | 7.26                  | 0.23  | 0.41 | 0.33                | 0.00  | Calculated                          |
| 5 PIPEB2-A2         | 3.33         | 0 00:21              | 7.23                    | 0.46                      | 5.80                  | 0.76  | 0.60 | 0.48                | 0.00  | Calculated                          |
| 6 PIPEC1-C2         | 4.14         | 0 00:00              | 18.70                   | 0.22                      | 12.24                 | 0.02  | 0.40 | 0.32                | 0.00  | Calculated                          |
| 7 PIPEC2-C3         | 4.14         | 0 00:02              | 13.55                   | 0.31                      | 9.70                  | 0.14  | 0.47 | 0.38                | 0.00  | Calculated                          |
| 8 PIPEC3-C4         | 4.14         | 0 00:05              | 7.63                    | 0.54                      | 6.34                  | 0.30  | 0.66 | 0.52                | 0.00  | Calculated                          |
| 9 PIPEC4-OUTLET     | 4.14         | 0 00:05              | 7.79                    | 0.53                      | 6.44                  | 0.13  | 0.65 | 0.52                | 0.00  | Calculated                          |
| 10 PIPED1-D2        | 0.27         | 0 00:05              | 7.63                    | 0.04                      | 3.03                  | 0.09  | 0.16 | 0.13                | 0.00  | Calculated                          |
| 11 PIPED2-D3        | 1.73         | 0 00:21              | 7.11                    | 0.24                      | 4.78                  | 0.25  | 0.42 | 0.34                | 0.00  | Calculated                          |
| 12 PIPED3-D4        | 3.20         | 0 00:05              | 10.92                   | 0.29                      | 7.74                  | 0.12  | 0.46 | 0.37                | 0.00  | Calculated                          |
| 13 PIPED4-DET2      | 7.46         | 0 00:05              | 11.20                   | 0.67                      | 9.76                  | 0.00  | 0.75 | 0.60                | 0.00  | Calculated                          |
| 14 PIPEE1-E2        | 0.83         | 0 00:05              | 17.50                   | 0.05                      | 10.13                 | 0.20  | 0.18 | 0.15                | 0.00  | Calculated                          |
| 15 PIPEE2-D3        | 2.17         | 0 00:05              | 10.06                   | 0.22                      | 6.56                  | 0.19  | 0.39 | 0.31                | 0.00  | Calculated                          |
| 16 PIPEF1-F2        | 1.45         | 0 00:05              | 16.31                   | 0.09                      | 9.23                  | 0.08  | 0.25 | 0.20                | 0.00  | Calculated                          |
| 17 PIPEF2-D4        | 2.38         | 0 00:05              | 11.74                   | 0.20                      | 7.51                  | 0.21  | 0.38 | 0.31                | 0.00  | Calculated                          |
| 18 PIPEG1-D4        | 1.93         | 0 00:05              | 8.36                    | 0.23                      | 5.55                  | 0.08  | 0.41 | 0.33                | 0.00  | Calculated                          |
| 19 PIPEH1-EXINLET   | 2.72         | 0 00:00              | 25.65                   | 0.11                      | 13.60                 | 0.03  | 0.27 | 0.22                | 0.00  | Calculated                          |

#### Inlet Input

| SN | Element<br>ID | Inlet<br>Manufacturer | Manufacturer<br>Part | Inlet<br>Location | Number of<br>Inlets | Catchbasin<br>Invert | , ,    | Inlet<br>Depth | Initial<br>Water |      | Ponded<br>Area | Grate<br>Clogging |
|----|---------------|-----------------------|----------------------|-------------------|---------------------|----------------------|--------|----------------|------------------|------|----------------|-------------------|
|    |               |                       | Number               |                   |                     | Elevation            |        |                | Elevation        |      |                | Factor            |
|    |               |                       |                      |                   |                     | (ft)                 | (ft)   | (ft)           | (ft)             | (ft) | (ft²)          | (%)               |
| 1  | A1            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 516.00               | 519.44 | 3.44           | 516.00           | 0.00 | N/A            | 0.00              |
| 2  | A3            | FHWA HEC-22 GENERIC   | N/A                  | On Sag            | 1                   | 513.24               | 516.72 | 3.48           | 0.00             | 0.00 | 0.00           | 0.00              |
| 3  | B1            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 518.73               | 522.35 | 3.63           | 518.73           | 0.00 | N/A            | 0.00              |
| 4  | B2            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 516.42               | 521.07 | 4.65           | 516.42           | 0.00 | N/A            | 0.00              |
| 5  | D1            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 495.73               | 497.73 | 2.00           | 495.73           | 0.00 | N/A            | 0.00              |
| 6  | D2            | FHWA HEC-22 GENERIC   | N/A                  | On Sag            | 1                   | 486.68               | 499.73 | 13.05          | 486.68           | 0.00 | 10.00          | 0.00              |
| 7  | E1            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 496.80               | 499.88 | 3.08           | 496.80           | 0.00 | N/A            | 0.00              |
| 8  | E2            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 487.51               | 492.54 | 5.03           | 487.51           | 0.00 | N/A            | 0.00              |
| 9  | F1            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 490.00               | 493.11 | 3.11           | 490.00           | 0.00 | N/A            | 0.00              |
| 10 | F2            | FHWA HEC-22 GENERIC   | N/A                  | On Grade          | 1                   | 487.30               | 490.81 | 3.51           | 487.30           | 0.00 | N/A            | 0.00              |
| 11 | G1            | FHWA HEC-22 GENERIC   | N/A                  | On Sag            | 1                   | 485.00               | 488.00 | 3.00           | 485.00           | 0.00 | 10.00          | 0.00              |

### Roadway & Gutter Input

| SN Element | ,            | Roadway | Roadway   |         | Gutter |            | Allowable |
|------------|--------------|---------|-----------|---------|--------|------------|-----------|
| ID         | Longitudinal | Cross   | Manning's | Cross   | Width  | Depression | Spread    |
|            | Slope        | Slope   | Roughness | Slope   |        |            |           |
|            | (ft/ft)      | (ft/ft) |           | (ft/ft) | (ft)   | (in)       | (ft)      |
| 1 A1       | 0.2000       | 0.2000  | 0.0130    | 0.0620  | 2.00   | 0.0000     | 7.00      |
| 2 A3       | N/A          | 0.0200  | 0.0160    | 0.0620  | 2.00   | 0.0656     | 7.00      |
| 3 B1       | 0.0240       | 0.0240  | 0.0130    | 0.0620  | 2.00   | 0.0000     | 7.00      |
| 4 B2       | 0.0260       | 0.0260  | 0.0130    | 0.0620  | 2.00   | 0.0000     | 7.00      |
| 5 D1       | 0.0560       | 0.0560  | 0.0130    | 0.0620  | 2.00   | 0.0328     | 7.00      |
| 6 D2       | N/A          | 0.0500  | 0.0130    | 0.0620  | 2.00   | 0.0328     | 7.00      |
| 7 E1       | 0.0630       | 0.0630  | 0.0130    | 0.0620  | 2.00   | 0.0000     | 7.00      |
| 8 E2       | 0.0630       | 0.1070  | 0.0130    | 0.0620  | 2.00   | 0.0328     | 7.00      |
| 9 F1       | 0.0620       | 0.0090  | 0.0130    | 0.0620  | 2.00   | 0.0328     | 7.00      |
| 10 F2      | 0.0350       | 0.0530  | 0.0130    | 0.0620  | 2.00   | 0.0328     | 7.00      |
| 11 G1      | N/A          | 0.0210  | 0.0130    | 0.0620  | 2.00   | 0.0328     | 7.00      |

#### **Inlet Results**

| SN Element | Peak  | Peak    | Peak Flow   | Peak Flow | Inlet       | Max Gutter  | Max Gutter  | Max Gutter  | Time of      | Total   | Total Time |
|------------|-------|---------|-------------|-----------|-------------|-------------|-------------|-------------|--------------|---------|------------|
| ID         | Flow  | Lateral | Intercepted | Bypassing | Efficiency  | Spread      | Water Elev. | Water Depth | Max Depth    | Flooded | Flooded    |
|            |       | Inflow  | by          | Inlet     | during Peak | during Peak | during Peak | during Peak | Occurrence   | Volume  |            |
|            |       |         | Inlet       |           | Flow        | Flow        | Flow        | Flow        |              |         |            |
|            | (cfs) | (cfs)   | (cfs)       | (cfs)     | (%)         | (ft)        | (ft)        | (ft)        | (days hh:mm) | (ac-in) | (min)      |
| 1 A1       | 2.89  | 2.89    | 1.12        | 1.78      | 38.61       | 2.25        | 519.61      | 0.17        | 0 00:20      | 0.00    | 0.00       |
| 2 A3       | 2.74  | 2.74    | N/A         | N/A       | N/A         | 13.12       | 517.23      | 0.51        | 0 00:05      | 0.00    | 0.00       |
| 3 B1       | 3.51  | 3.51    | 2.36        | 1.15      | 67.27       | 7.44        | 522.60      | 0.25        | 0 00:20      | 0.00    | 0.00       |
| 4 B2       | 1.62  | 1.62    | 1.38        | 0.24      | 85.18       | 4.81        | 521.27      | 0.20        | 0 00:20      | 0.00    | 0.00       |
| 5 D1       | 0.27  | 0.27    | 0.27        | 0.00      | 100.00      | 1.00        | 497.79      | 0.06        | 0 00:05      | 0.00    | 0.00       |
| 6 D2       | 1.73  | 0.72    | N/A         | N/A       | N/A         | 4.91        | 500.08      | 0.35        | 0 00:05      | 0.00    | 0.00       |
| 7 E1       | 0.85  | 0.85    | 0.84        | 0.02      | 97.89       | 2.18        | 500.02      | 0.14        | 0 00:05      | 0.00    | 0.00       |
| 8 E2       | 1.53  | 1.53    | 1.36        | 0.17      | 89.01       | 2.43        | 492.71      | 0.17        | 0 00:05      | 0.00    | 0.00       |
| 9 F1       | 1.75  | 1.75    | 1.45        | 0.30      | 82.79       | 6.94        | 493.28      | 0.17        | 0 00:05      | 0.00    | 0.00       |
| 10 F2      | 0.97  | 0.76    | 0.95        | 0.02      | 97.96       | 2.66        | 490.97      | 0.16        | 0 00:05      | 0.00    | 0.00       |
| 11 G1      | 1.94  | 1.89    | N/A         | N/A       | N/A         | 9.80        | 488.37      | 0.37        | 0 00:05      | 0.00    | 0.00       |



# **APPENDIX 6**

# **Groundwater Recharge Volume**

#### **Standard 3**

Groundwater Recharge Volume Required:

Rv = F x Impervious Area, where:

Rv = Required Recharge Volume [Ac-ft]

F = Target Depth Factor associated with each Hydrologic Soil Group (HSG) [in] Impervious Area = Total Pavement and Rooftop Area under Post-development Conditions [Ac]

| _          |      |    | Impervious Area<br>[Acres] | Required Recharge<br>Volume [Ac-ft] |
|------------|------|----|----------------------------|-------------------------------------|
| HSG"A", F= | 0.6  | in | 0.000                      | 0.000                               |
| HSG"B", F= | 0.35 | in | 0.000                      | 0.000                               |
| HSG"C", F= | 0.25 | in | 2.45                       | 0.051                               |
| HSG"D", F= | 0.1  | in | 0.000                      | 0.000                               |

#### Total Required Recharge Volume (Rv) = 0.051 Ac-ft

Capture Area Adjustment: (PER DEP Handbook V.3 Ch.1 P.27-28)

| Area in Pavement | = 52,708  sf (1.21  AC)      |
|------------------|------------------------------|
| Area in Sidewalk | = 12,367 sf (0.28 AC)        |
| Area in Roof     | = <u>41,902 sf (0.96 AC)</u> |

#### Total = 2.45 AC

| Total Site Impervious Area (Total)=                     | 2.45 Acres  |
|---------------------------------------------------------|-------------|
| Impervious Area Draining to Infiltrative BMPs (infil) = | 1.23 Acres  |
| Percent Imp. Area Draining to Infiltrative BMPs =       | 50%         |
|                                                         |             |
| Capture Area Adjustment Factor (Total)/(Infil) = Ca =   | 2.0         |
| Adjusted Required Recharge Volume = Ca x Rv =           | 0.102 Ac-Ft |

Adjusted Required Recharge Volume = Ca x Rv =

| Total area in pervious pavers                  | = 24,158 sf |  |
|------------------------------------------------|-------------|--|
| Lower parking area                             | = 14,064 sf |  |
| Area in Chambers                               | = 770 sf    |  |
| $\mathbf{AR} = $ Recharge surface area in squa | = 13,295 sf |  |

VRS = Volume of recharge system in cubic feet = Volume of 3/4 " clean Rock fill = 13,295 sf x 1 ft thick blanket = 13,295 cf **VRS** = Volume in void = 13,295 cf x 0.35 = 4,653 cf = 0.106 Ac-Ft

Groundwater Recharge Volume Provided:

| BMP                                               | Provided Recharge_Volume (Ac-Ft) |
|---------------------------------------------------|----------------------------------|
| Lower Extended<br>Infiltartion/Detention<br>Basin | 0.106                            |

PROVIDED GROUNDWATER RECHARGE VOLUME IS GREATER THAN OR EQUAL TO THE REQUIRED RECHARGE VOLUME, THEREFORE PROPOSED STORMWATER MANAGEMENT DESIGN IS IN COMPLIANCE WITH STANDARD 3.

The time required to dewater the recharge system may be estimated by the following equation:

 $T_D = V_{RS} / (f/12 * AR)$ 

Where:

 $T_D$  = Dewatering time in hours  $V_{RS}$  = Volume of recharge system in cubic feet  $A_R$  = Recharge surface area in square feet f = Design infiltration rater in inches/hour 12 = conversion from inches to feet

 $T_D = V_{RS} / (f/12 * AR)$ 

= 4653 / (0.25/12 \* 13,295)

= 16.04 hrs

Note:

**1**. The infiltration BMPs have been designed to fully drain within 72 hours, therefore the proposed stormwater management design is in compliance with Standard 3.

2. Per Volume 3 of the Massachusetts Stormwater management Standard, the "Static" method has been proposed. Therefore, the Rawls Rate at the location and soil depth has been used.

# **APPENDIX 7**

# Water Quality Calculations

#### **Standard 4**

#### Water Quality:

Vwq = (Dwq/12 inches/foot) \* AIMP \* 43560 sf/acre):

 $V_{WQ}$  = *Required Water Quality Volume* (in cubic feet)

- $D_{WQ}$  = Water Quality Depth: one-inch for discharges within a Zone II or Interim Wellhead Protection Area, to or near another critical area, runoff from a LUHPPL, or exfiltration to soils with infiltration rate greater than 2.4 inches/hour or greater; <sup>1</sup>/<sub>2</sub>-inch for discharges near or to other areas.
- $A_{IMP}$  = Impervious Area (in acres) Area in roof has been excluded.

| Area in Pavement | = 52,708 sf (1.21 AC)        |
|------------------|------------------------------|
| Area in Sidewalk | = <u>12,367 sf (0.28 AC)</u> |

**Total** = **1.49 AC** 

 $V_{WQ} = (D_{WQ}/12 \text{ inches/foot}) * (A_{IMP} * 43,560 \text{ square feet/acre})$   $V_{WQ} = (\frac{1}{2} - \frac{1}{12} \text{ inches/foot}) * (1.49 * 43,560 \text{ square feet/acre})$  $V_{WQ} = 2,704.3 \text{ cubic feet}$ 

Total water Quality Provided:

| Pond 1 Chamber System Volume | $= 10,903 	ext{ cf}$ |
|------------------------------|----------------------|
| Pond 2 Chamber System Volume | = 4,788 cf           |

#### Total Provided = 15,691 cf

WATER QUALITY VOLUME IS GREATER THAN OR EAUQL TO THE REQUIRED WATER QUALITY VOLUME. THEREFORE, THE PROPOSED STORMWATER MANAGEMENTY DESIGN IS IN COMPLIANCE WITH STANDARD 4.

#### INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

|                                      | Location:                            | Millbury, MA                     |                       |                                                  |                                                                        |
|--------------------------------------|--------------------------------------|----------------------------------|-----------------------|--------------------------------------------------|------------------------------------------------------------------------|
|                                      | В                                    | С                                | D                     | Е                                                | F                                                                      |
| TSS Removal<br>Calculation Worksheet | BMP <sup>1</sup>                     | TSS Removal<br>Rate <sup>1</sup> | Starting TSS<br>Load* | Amount<br>Removed (C*D)                          | Remaining<br>Load (D-E)                                                |
|                                      | Porous Pavement                      | 0.80                             | 1.00                  | 0.80                                             | 0.20                                                                   |
|                                      | Deep Sump and Hooded<br>Catch Basin  | 0.25                             | 0.20                  | 0.05                                             | 0.15                                                                   |
|                                      | Street Sweeping - 10%                | 0.10                             | 0.15                  | 0.02                                             | 0.14                                                                   |
|                                      | Subsurface Infiltration<br>Structure | 0.80                             | 0.14                  | 0.11                                             | 0.03                                                                   |
| Cal                                  |                                      | 0.00                             | 0.03                  | 0.00                                             | 0.03                                                                   |
|                                      |                                      |                                  | SS Removal =          | 97%                                              | Separate Form Needs to<br>be Completed for Each<br>Outlet or BMP Train |
|                                      | Project:<br>Prepared By:<br>Date:    |                                  |                       | *Equals remaining load fron which enters the BMP | n previous BMP (E)                                                     |

## **APPENDIX 8**

# Long Term Stormwater Operation & Maintenance Plan

#### Long-Term Pollution Prevention Plan

This Long-Term Pollution Prevention Plan has been developed to establish site management practices that improve the quality of stormwater discharges from the Project.

#### **Maintenance of Pavement Systems**

#### **Paved Surfaces**

Regular maintenance of pavement surfaces will prevent pollutants such as oil and grease, trash, and sediments from entering the stormwater management system. The following practices should be performed:

Sweep or vacuum asphalt pavement areas with a commercial cleaning unit and dispose of removed material.

Routinely pick up and remove litter from the parking areas, islands, and perimeter landscaping.

#### **Maintenance of Vegetated Areas**

Proper maintenance of vegetated areas can prevent the pollution of stormwater runoff by controlling the source of pollutants such as suspended sediments, excess nutrients, and chemicals from landscape care products. Practices that should be followed under the regular maintenance of the vegetated landscape include:

Inspect planted areas on a semi-annual basis and remove any litter.

Maintain planted areas adjacent to pavement to prevent soil washout.

Immediately clean any soil deposited on pavement.

Re-seed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming.

Plant alternative mixture of grass species in the event of unsuccessful establishment.

#### Management of Snow and Ice

#### **Storage and Disposal**

Snow shall be stockpiled on standard pavement surfaces so sand and salt may be swept in the spring or removed as snow melts and drains through the stormwater management system. Key practices for the safe storage and disposal of snow include:

Under no circumstances shall snow be disposed or stored in wetland resource areas.

Under no circumstances shall snow be disposed or stored in stormwater basins, ponds, rain gardens, swales, channels, or trenches.

#### Salt and Deicing Chemicals

The amount of salt and deicing chemicals to be used on the site shall be reduced to the minimum amount needed to provide safe pedestrian and vehicle travel. The following practices should be followed to control the amount of salt and deicing materials that come into contact with stormwater runoff:

Devices used for spreading salt and deicing chemicals should be capable of varying the rate of application based on the site specific conditions.

Sand and salt should be stockpiled under covered storage facilities that prevent precipitation and adjacent runoff from coming in contact with the deicing materials.

#### **Spill Prevention and Response Plan**

Spill prevention equipment and training will be provided by the property management company.

#### **Initial Notification**

In the event of a spill the facility and/or construction manager or supervisor will be notified immediately.

#### FACILITY MANAGER

| Name:  | Home Phone: |  |
|--------|-------------|--|
| Phone: | _E-mail:    |  |

#### **CONSTRUCTION MANAGER**

| Name:  | Home Phone: |
|--------|-------------|
| Phone: | _E-mail:    |

The supervisor will first contact the Fire Department and then notify the Police Department,

the Public Health Commission and the Conservation Commission. The Fire Department is ultimately responsible for matters of public health and safety and should be notified immediately.

#### **Further Notification**

Based on the assessment from the Fire Chief, additional notification to a cleanup contractor may be made. The Massachusetts Department of Environmental Protection (DEP) and the EPA may be notified depending upon the nature and severity of the spill. The Fire Chief will be responsible for determining the level of cleanup and notification required. The attached list of emergency phone numbers shall be posted in the main construction/facility office and readily accessible to all employees. A hazardous waste spill report shall be completed as necessary using the attached form.

#### **Emergency Notification Phone Numbers**

#### **1. FACILITY MANAGER**

|    | Name:      | Home Phone:                       |  |  |  |  |
|----|------------|-----------------------------------|--|--|--|--|
|    | Phone:     | Phone:E-mail:                     |  |  |  |  |
|    | ALTERENA   | ТЕ                                |  |  |  |  |
|    | Name:      | Home Phone:                       |  |  |  |  |
|    | Phone:     | E-mail:                           |  |  |  |  |
| 2. | FIRE DEPAR | RTMENT                            |  |  |  |  |
|    | Emergency: | 911                               |  |  |  |  |
|    |            |                                   |  |  |  |  |
|    | POLICE DEI |                                   |  |  |  |  |
|    | Emergency: | 911                               |  |  |  |  |
|    | Business:  |                                   |  |  |  |  |
| 3. | CLEANUP C  | ONTRACTOR:                        |  |  |  |  |
|    | Address:   |                                   |  |  |  |  |
|    |            |                                   |  |  |  |  |
| 4. | MASSACHU   | SETTS DEPARTMENT OF ENVIRONMENTAL |  |  |  |  |
|    | PROTECTIO  | DN                                |  |  |  |  |
|    | Emergency: |                                   |  |  |  |  |
| 5. | NATIONAL   | RESPONSE CENTER                   |  |  |  |  |
|    | Phone:     |                                   |  |  |  |  |
|    |            |                                   |  |  |  |  |

|    | Emergency: | E: U.S. ENVIRONMENTAL PROTECTION AGENC |
|----|------------|----------------------------------------|
|    | Business:  |                                        |
| 6. | CONSERVA   | TION COMMISSION                        |
|    | Contact:   |                                        |
|    | Phone:     |                                        |
| 7. | HEALTH D   | EPARTMENT                              |
|    | Contact:   |                                        |
|    | Phone:     |                                        |

### Hazardous Waste / Oil Spill Report

| Date                                                   | Time                 |       | _AM / PM |   |
|--------------------------------------------------------|----------------------|-------|----------|---|
| Exact location (Transformer #)                         |                      |       |          |   |
|                                                        | _ Type of equipment_ | _Make | <b>;</b> |   |
|                                                        | _Size                | _ S   | /        | Ν |
|                                                        | _Weather Conditions  |       |          |   |
|                                                        | _                    |       |          |   |
| On or near Water  Yes<br>If Yes, name of body of Water |                      |       |          |   |
| □ No                                                   |                      |       |          |   |
| Type of chemical/oil spilled                           |                      |       |          |   |
| Amount of chemical/oil spilled                         |                      |       |          |   |
| Cause of Spill                                         |                      |       |          |   |
| Measures taken to contain or cle                       | an up spill          |       |          |   |
| Amount of chemical/oil recovered                       | edMethod             |       |          |   |
| Material collected as a result of                      | cleanup:             |       |          |   |
| Drums containing                                       | <u> </u>             |       |          |   |

| Drums containing                                                                                     |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Drums containing                                                                                     |  |  |  |  |  |  |
| Location and method of debris disposal                                                               |  |  |  |  |  |  |
| Name and address of any person, firm, or corporation suffering damages:                              |  |  |  |  |  |  |
| Procedures, method, and precautions instituted to prevent a similar occurrence from recurring:       |  |  |  |  |  |  |
| Spill reported to General Office by Time AM / PM Spill reported to DEP / National Response Center by |  |  |  |  |  |  |
| DEP Date Time AM / PM Inspector                                                                      |  |  |  |  |  |  |
| NRC DateTimeAM / PM Inspector                                                                        |  |  |  |  |  |  |
| Additional comments:                                                                                 |  |  |  |  |  |  |

#### **Assessment - Initial Containment**

The supervisor or manager will assess the incident and initiate containment control measures with the appropriate spill containment equipment included in the spill kit kept on-site. A list of recommended spill equipment to be kept on site is included on the following page.

| Fire / Police Department          | 911 |
|-----------------------------------|-----|
| Millbury Health Department        |     |
| Millbury Conservation Commission: |     |

**Emergency Response Equipment** 

The following equipment and materials shall be available and stored in a secure area for long-term emergency response needs.

#### **Stormwater Operation and Maintenance Plan**

#### **Project Information**

Site 115 West Main Street Millbury, MA

**Owner** Douglas Backman 115 West Main Street Millbury, MA

#### **Developer** Douglas Backman 115 West Main Street Millbury, MA

#### **Description of Stormwater Maintenance Measures**

The following Operation and Maintenance (O&M) program is proposed to ensure the continued effectiveness of the stormwater management system. Attached to this plan are a Stormwater Best Management Practices Checklist and Maintenance Figure for use during the long term operation and maintenance of the stormwater management system.

#### **Catch Basins**

All catch basins shall be inspected and cleaned a minimum of at least four times per year.

Sediment (if more than two feet deep from the bottom of the structure) and/or floatable pollutants shall be pumped from the basin and disposed of at an approved offsite facility in accordance with all applicable regulations.

Any structural damage or other indication of malfunction will be reported to the site manager and repaired as required.

During colder periods, the catch basin grates must be kept free of snow and ice.

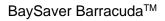
During warmer periods, the catch basin grates must be kept free of leaves, litter, sand, and debris.

#### Subsurface Infiltration/Detention System

- □ The subsurface infiltration/detention systems shall be inspected at least once each year by removing the manhole/access port covers and determining the thickness of sediment that has accumulated.
- □ If sediment is more than five inches deep from the bottom of the structure, it must be suspended via flushing with clean water and removed using a vactor truck.
- □ Manufacturer's specifications and instructions for cleaning the sediment removal row is provided as an attachment to this section.
- □ Emergency overflow pipes shall be examined at least once each year and verified that no blockage has occurred.
- □ System shall be observed after rainfalls to see if it is properly draining.

#### **Stormwater Outfalls**

- □ Inspect outfall locations monthly for the first three months after construction to ensure proper functioning and correct any areas that have settled or experienced washouts.
- □ Inspect outfalls annually after initial three-month period.
- □ Annual inspections should be supplemented after large storms when washouts may occur.
- □ Maintain vegetation around outfalls to prevent blockages at the outfall.
- □ Maintain riprap pad below each outfall and replace any washouts.
- $\Box$  Remove and dispose of any trash or debris at the outfall.


### Long-Term Best Management Practices – Maintenance/ Evaluation Checklist

| Best<br>Management<br>Practice                 | Inspection Frequency                                                                                                                                        | Date<br>Inspected | Inspector | Minimum Maintenance and Key Items to Check                                                                                                                                                                                                                                                                                        | Cleaning |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Catch basins                                   | Four times per year                                                                                                                                         |                   |           | <ul> <li>Clean accumulated sand and sediment whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin;</li> <li>Floatables</li> </ul>                                                                                                          |          |
| Subsurface<br>Infiltration/Detention<br>System | In accordance with<br>manufacturer's recommendations<br>but no less than twice a year<br>following installation and no less<br>than once a year thereafter. |                   |           | <ul> <li>Remove any debris that might clog the system</li> <li>Stadia rod may be inserted through inspection ports to determine the depth of sediment. Cleanout is required if the sediment has accumulated to an average depth exceeding 5" from the bottom of the structure, per the manufacturer's recommendations.</li> </ul> |          |
| Stormwater Outfalls                            | Monthly for the first three months<br>after construction and no less<br>than once a year thereafter.                                                        |                   |           | <ul> <li>Maintain vegetation around outfalls to prevent blockages</li> <li>Maintain riprap pad below each outfall and replace any washouts</li> <li>Remove and dispose of any trash or debris at the outfall</li> </ul>                                                                                                           |          |

Stormwater Control Manager \_\_\_\_\_

| ng/Repair Needed | Date of<br>Cleaning/Repair | Performed by |
|------------------|----------------------------|--------------|
| ] yes 🗌 no       |                            |              |
| yes no           |                            |              |
| ] yes 🗌 no       |                            |              |

# **Maintenance Guide**



July 2017

One of the advantages of the BaySaver Barracuda is the ease of maintenance. Like any system that collects pollutants, the BaySaver Barracuda must be maintained for continued effectiveness. Maintenance is a simple procedure performed using a vacuum truck or similar equipment. The systems were designed to minimize the volume of water removed during routine maintenance, reducing disposal costs.

Contractors can access the pollutants stored in the manhole through the manhole cover. This allows them to gain vacuum hose access to the bottom of the manhole to remove sediment and trash. There is no confined space entry necessary for inspection or maintenance.

The entire maintenance procedure typically takes from 2 to 4 hours, depending on the size of the system, the captured material, and the capacity of the vacuum truck.

Local regulations may apply to the maintenance procedure. Safe and legal disposal of pollutants is the responsibility of the maintenance contractor. Maintenance should be performed only by a qualified contractor.

# **Inspection and Cleaning Cycle**

Periodic inspection is needed to determine the need for and frequency of maintenance. You should begin inspecting as soon as construction is complete and thereafter on an annual basis. Typically, the system needs to be cleaned every 1-3 years.

Excessive oils, fuels or sediments may reduce the maintenance cycle. Periodic inspection is important.

# **Determining When to Clean**

To determine the sediment depth, the maintenance contractor should lower a stadia rod into the manhole until it contacts the top of the captured sediment and mark that spot on the rod. Then push the probe through to the bottom of the sump and mark that spot to determine sediment depth.

Maintenance should occur when the sediment has reached the levels indicated in the Storage Capacity Chart.

# **BaySaver Barracuda Storage Capacities**

| Model | Manhole Diameter | Treatment Chamber<br>Capacity | Standard Sediment<br>Capacity (20" depth) | NJDEP Sediment Capacity<br>(50% of standard depth) |
|-------|------------------|-------------------------------|-------------------------------------------|----------------------------------------------------|
| S3    | 36"              | 212 gallons                   | 0.44 cubic yards                          | 0.22 cubic yards                                   |
| S4    | 48"              | 564 gallons                   | 0.78 cubic yards                          | 0.39 cubic yards                                   |
| S5    | 60"              | 881 gallons                   | 1.21 cubic yards                          | 0.61 cubic yards                                   |
| S6    | 72"              | 1269 gallons                  | 1.75 cubic yards                          | 0.88 cubic yards                                   |
| S8    | 96"              | 3835 gallons                  | 3.10 cubic yards                          | 1.55 cubic yards                                   |
| S10   | 120"             | 7496 gallons                  | 4.85 cubic yards                          | 2.43 cubic yards                                   |

### **Maintenance Instructions**

1. Remove the manhole cover to provide access to the pollutant storage. Pollutants are stored in the sump, below the bowl assembly visible from the surface. You'll access this area through the 10" diameter access cylinder.



- 2. Use a vacuum truck or other similar equipment to remove all water, debris, oils and sediment. See figure 1.
- 3. Use a high pressure hose to clean the manhole of all the remaining sediment and debris. Then, use the vacuum truck to remove the water.
- 4. Fill the cleaned manhole with water until the level reaches the invert of the outlet pipe.
- 5. Replace the manhole cover.
- 6. Dispose of the polluted water, oils, sediment and trash at an approved facility.
  - Local regulations prohibit the discharge of solid material into the sanitary system. Check with the local sewer authority for authority to discharge the liquid.
  - Some localities treat the pollutants as leachate. Check with local regulators about disposal requirements.
  - Additional local regulations may apply to the maintenance procedure.

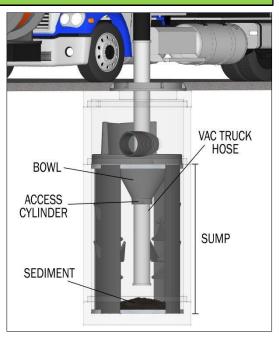



Figure 1

#### BELGARD<sup>®</sup> | PAVES THE WAY

Getting Started | Building | Care & Maintenance

# LONG-TERM CARE & MAINTENANCE

Even though Belgard<sup>®</sup> pavers are extremely durable and come with a lifetime structural warranty, seasonal maintenance is encouraged to preserve the beauty and integrity of your hardscape installation. To keep pavers looking their best, plan to clean and reseal them every three to five years.

### **GENERAL MAINTENANCE**

Clean your pavers each Spring with a coarse-bristle "stable" broom and a paver cleaner to keep them looking like new.

Some weeds, if left unaddressed, can shift pavers apart over time. Be sure to periodically apply a granular weed preventative between joints as a part of your paver maintenance routine.

Be careful when cleaning your Belgard pavers with power washers as the force of the spray can expose the aggregate under the paver's surface.

Wait at least 90 days to seal your pavers so you can remove any efflorescence that might appear after installation.

## **CLEANING**

Before applying any paver cleaning solution to your hardscape, test a small inconspicuous area first to be sure you get the desired results. Be sure to read and follow the directions printed on container labels for cleaning solution use, application, precautions and first aid. Always rinse the solution off thoroughly after use. In the event of an oil spill, act to remove it promptly with granular oil absorbent. Spills should be soaked up, not rubbed. Rubbing will drive the stain deeper into the concrete.

# PROTECTING

De-icing substances, when used in proper amounts, should not damage pavers; however, they may accelerate surface wear on some paver styles. Use them in moderation.

Sealers should not be applied more than once in three years, to a maximum of two applications. Too many applications will create a film on the surface, which may discolor in sunlight.

The joints between paving stones are the most vulnerable areas of any installation. Keep these joints topped off with jointing sand to prevent the sand-bedding layer below from deteriorating, causing the pavers to shift.

Part of the Oldcastle<sup>®</sup> family of architectural products, Techniseal has been a world leader in the field of jointing sand and paver maintenance products for over 30 years. Inventors of the polymeric sand category, Techniseal has long been the preferred jointing material used with installations of Belgard pavers. In addition, Techniseal offers a number of cleaning and sealing products to ensure the lasting beauty of your Belgard installation for years to come.

LEARN MORE ABOUT TECHNISEAL PRODUCTS

# **APPENDIX 9**

# **Construction Period Pollution Prevention Plan**

#### **Erosion and Sedimentation Control Measures**

The following erosion and sedimentation controls are for use during the earthwork and construction phases of the project. The following controls are provided as recommendations for the site contractor and do not constitute or replace the final Stormwater Pollution Prevention Plan that must be fully implemented by the Contractor and owner in Compliance with EPA NPDES regulations.

#### **Straw Wattles**

Straw wattles will be placed to trap sediment transported by runoff before it reaches the drainage system or leaves the construction site.

#### Silt Fencing

In areas where high runoff velocities or high sediment loads are expected, straw wattles may be backed up with silt fencing. This semi-permeable barrier made of a synthetic porous fabric will provide additional protection. The silt fences and straw wattle barrier will be replaced as determined by periodic field inspections.

#### **Catch Basin Protection**

Newly constructed and existing catch basins will be protected with straw bale barriers (where appropriate) or silt sacks throughout construction.

#### **Gravel and Construction Entrance/Exit**

A temporary crushed-stone construction entrance/exit will be constructed. A cross slope will be placed in the entrance to direct runoff to a protected catch basin inlet or settling area. If deemed necessary after construction begins, a wash pad may be included to wash off vehicle wheels before leaving the project site.

#### **Diversion Channels**

Diversion channels will be used to collect runoff from construction areas and discharge to either sedimentation basins or protected catch basin inlets.

#### **Temporary Sediment Basins**

Temporary sediment basins will be designed either as excavations or bermed stormwater detention structures (depending on grading) that will retain runoff for a sufficient period of time to allow suspended soil particles to settle out prior to discharge. These temporary basins will be located based on construction needs as determined by the contractor and outlet devices will be designed to control velocity and sediment. Points of discharge from sediment basins will be stabilized to minimize erosion.

### **Vegetative Slope Stabilization**

Stabilization of open soil surfaces will be implemented within 14 days after grading or construction activities have temporarily or permanently ceased, unless there is sufficient snow cover to prohibit implementation. Vegetative slope stabilization will be used to minimize erosion on slopes of 3:1 or flatter. Annual grasses, such as annual rye, will be used to ensure rapid germination and production of root mass. Permanent stabilization will be completed with the planting of perennial grasses or legumes. Establishment of temporary and permanent vegetative cover may be established by hydro-seeding or sodding. A suitable topsoil, good seedbed preparation, and adequate lime, fertilizer and water will be provided for effective establishment of these vegetative stabilization methods. Mulch will also be used after permanent seeding to protect soil from the impact of falling rain and to increase the capacity of the soil to absorb water.

### Maintenance

□ The contractor or subcontractor will be responsible for implementing each control shown on the Sedimentation and Erosion Control Plan. In accordance with EPA regulations, the contractor must sign a copy of a certification to verify that a plan has been prepared and that permit regulations are understood.

□ The on-site contractor will inspect all sediment and erosion control structures periodically and after each rainfall event. Records of the inspections will be prepared and maintained on-site by the contractor.

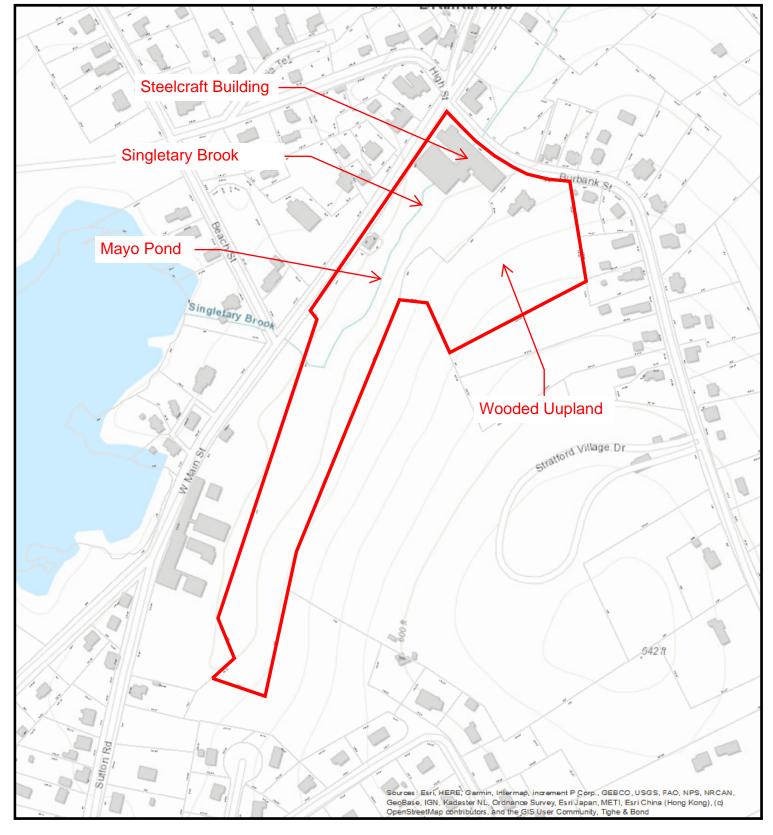
 $\Box$  Silt shall be removed from behind barriers if greater than 6-inches deep or as needed.

 $\hfill\square$  Damaged or deteriorated items will be repaired immediately after identification.

 $\hfill\square$  The underside of straw wattles should be kept in close contact with the earth and reset as necessary.

 $\hfill\square$  Sediment that is collected in structures shall be disposed of properly and covered if stored on-site.

□ Erosion control structures shall remain in place until all disturbed earth has been securely stabilized. After removal of structures, disturbed areas shall be re- graded and stabilized as necessary.


# Construction Best Management Practices – Maintenance/ Evaluation Checklist

| Best Management Practice       | Inspection<br>Frequency         | Date<br>Inspected | Inspector | Minimum Maintenance and Key<br>Items to Check                                                                                                                                                                                                                                                                              | Cleaning/Repair Needed<br>☐ yes | Date of<br>Cleaning/Repair | Performed by: |
|--------------------------------|---------------------------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|---------------|
| Straw Wattles/Silt Fencing     | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Inspect for accumulated sediment behind<br/>straw wattles/silt fencing and remove as<br/>needed.</li> <li>Separation of straw wattles with the earth<br/>and each other. Make adjustments to<br/>eliminate separations.</li> <li>Damaged or broken straw wattles/silt<br/>fence. Replace as necessary.</li> </ul> | ☐ yes ☐ no                      |                            |               |
| Gravel Construction Entrance   | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Accumulated sediment</li> <li>Remove sediment that is spilled, dropped, washed or tracked onto pavements outside limit of work.</li> </ul>                                                                                                                                                                        | ☐ yes ☐ no                      |                            |               |
| Catch Basin Protection         | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Accumulated sediment within silt sacks.<br/>Remove sediment as necessary.</li> <li>Rips or torn silt sacks. Replace damaged silt sacks.</li> </ul>                                                                                                                                                                | ☐ yes ☐ no                      |                            |               |
| Diversion Channels             | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Cracking,</li> <li>Erosion,</li> <li>Leakage in the embankments</li> <li>Repair diversion channels as necessary to prevent downstream erosion and sedimentation.</li> </ul>                                                                                                                                       | ☐ yes ☐ no                      |                            |               |
| Temporary Sedimentation Basins | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Cracking,</li> <li>Erosion,</li> <li>Leakage in the embankments</li> <li>Accumulation of sediment.</li> <li>Remove sediment and make repairs as necessary to ensure proper function of sediment basin.</li> </ul>                                                                                                 | ☐ yes ☐ no                      |                            |               |
| Vegetated Slope Stabilization  | In accordance with<br>NPDES CGP |                   |           | <ul> <li>Cracking,</li> <li>Erosion</li> <li>Repair/reaplace as necessary to ensure proper function of slope stabilization and to prevent downstream erosion and sedimentation.</li> </ul>                                                                                                                                 | ☐ yes ☐ no                      |                            |               |

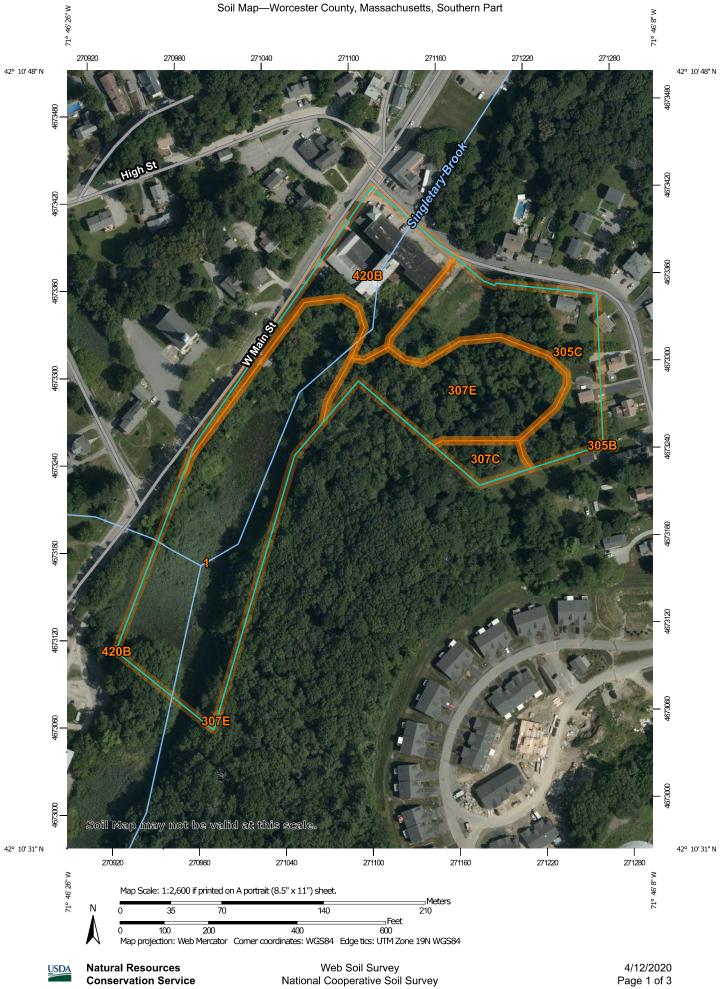
Stormwater Control Manager \_\_\_\_\_

# **APPENDIX 10**

NRCS Soil Map Geotechnical Report Test-Pit Data

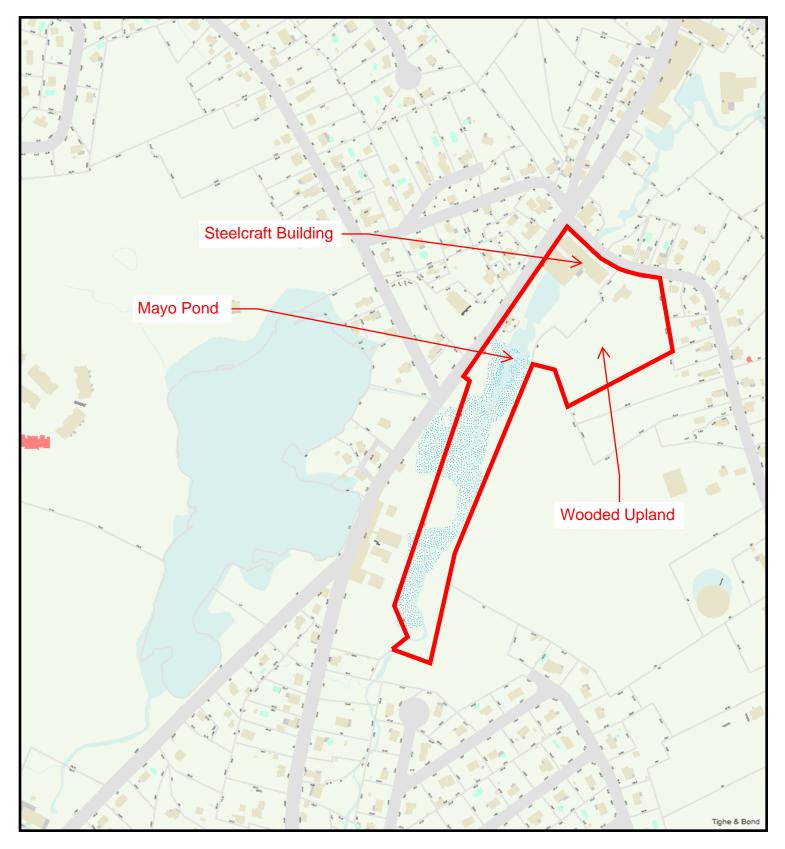


## **Topographic Map**


4/12/2020 11:03:16 AM

Scale: 1"=300' Scale is approximate






The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.



**Natural Resources Conservation Service** 

Web Soil Survey National Cooperative Soil Survey



## wetland

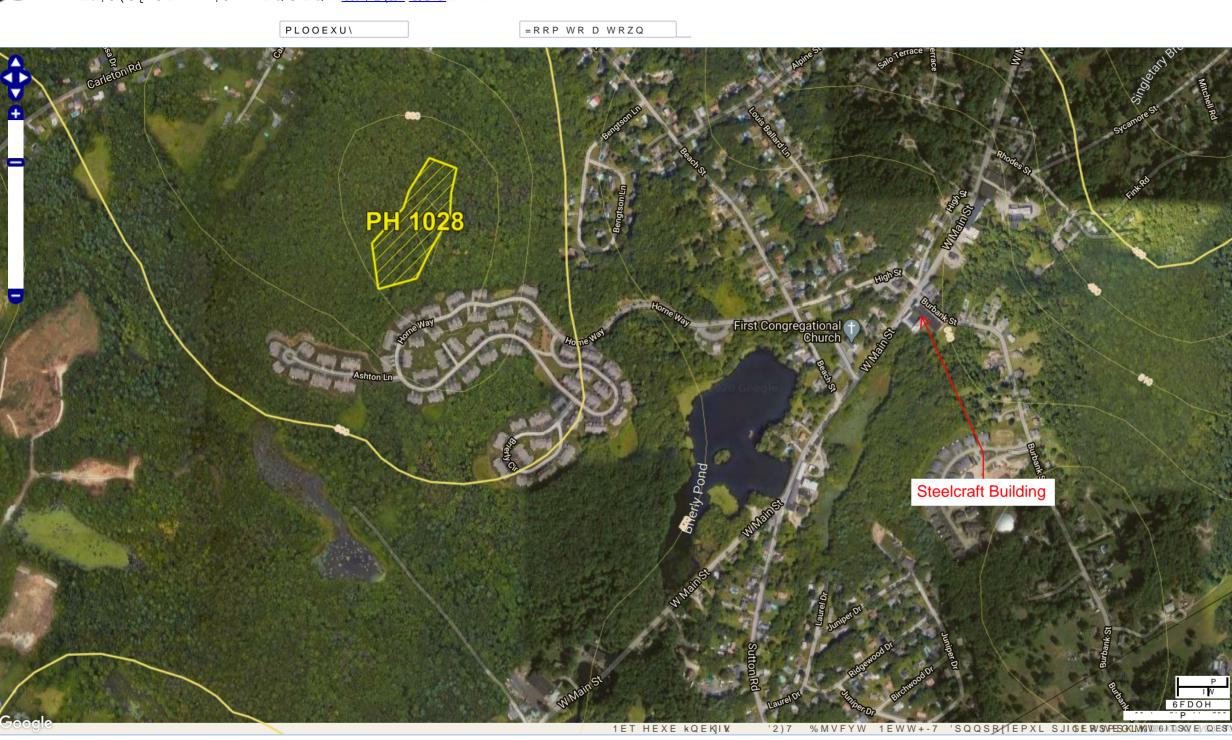
4/12/2020 11:00:13 AM

Scale: 1"=400' Scale is approximate

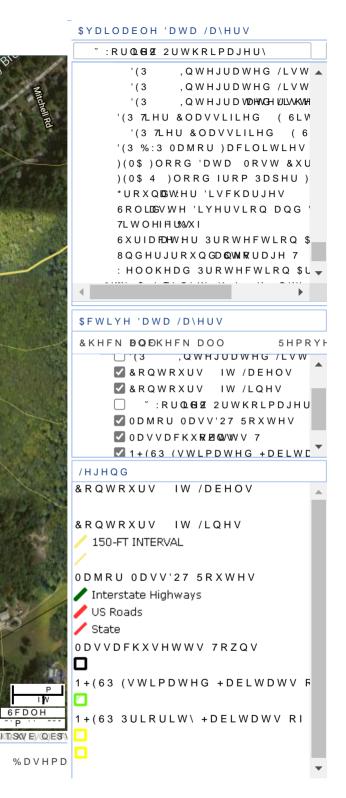
The information depicted on this map is for planning purposes only. It is not adequate for legal boundary definition, regulatory interpretation, or parcel-level analyses.

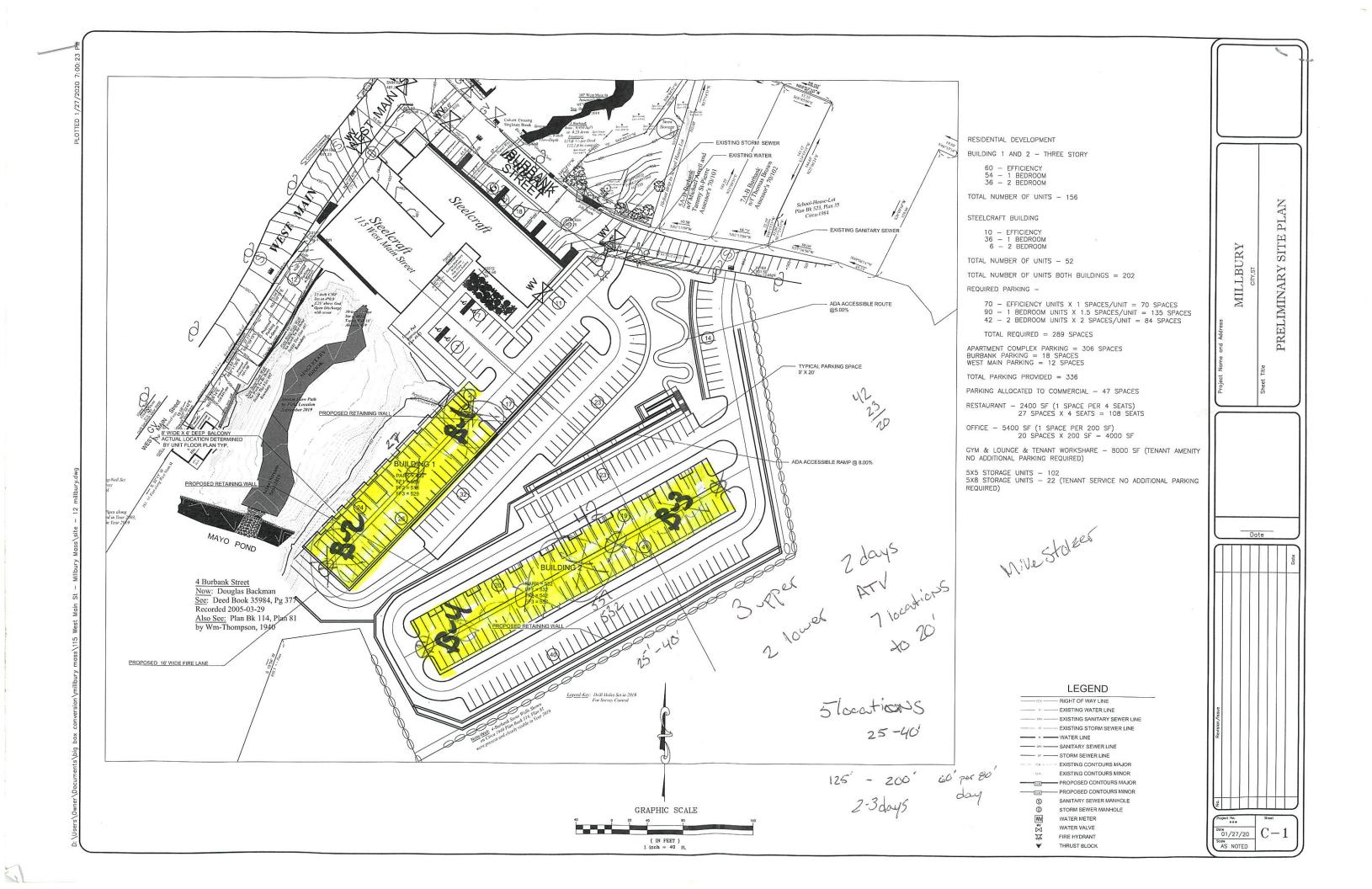


Soil Map-Worcester County, Massachusetts, Southern Part


|             | MAP L                  | EGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | MAP INFORMATION                                                                                                          |  |  |  |  |
|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Area of In  | terest (AOI)           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spoil Area            | The soil surveys that comprise your AOI were mapped at                                                                   |  |  |  |  |
|             | Area of Interest (AOI) | ۵                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stony Spot            | 1:25,000.                                                                                                                |  |  |  |  |
| Soils       |                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Very Stony Spot       | Warning: Soil Map may not be valid at this scale.                                                                        |  |  |  |  |
|             | Soil Map Unit Polygons | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wet Spot              | Enlargement of maps beyond the scale of mapping can cause                                                                |  |  |  |  |
| ~           | Soil Map Unit Lines    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other                 | misunderstanding of the detail of mapping and accuracy of so<br>line placement. The maps do not show the small areas of  |  |  |  |  |
|             | Soil Map Unit Points   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Special Line Features | contrasting soils that could have been shown at a more detail                                                            |  |  |  |  |
| Special     | Point Features         | Water Fea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | scale.                                                                                                                   |  |  |  |  |
| అ           | Blowout                | water rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Streams and Canals    | Please rely on the bar scale on each map sheet for map                                                                   |  |  |  |  |
| $\boxtimes$ | Borrow Pit             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | measurements.                                                                                                            |  |  |  |  |
| *           | Clay Spot              | Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rails                 | Source of Map: Natural Resources Conservation Service                                                                    |  |  |  |  |
| $\diamond$  | Closed Depression      | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Interstate Highways   | Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                      |  |  |  |  |
| ×           | Gravel Pit             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US Routes             |                                                                                                                          |  |  |  |  |
|             | Gravelly Spot          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Maps from the Web Soil Survey are based on the Web Merca<br>projection, which preserves direction and shape but distorts |  |  |  |  |
| .:<br>©     | Landfill               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Major Roads           | distance and area. A projection that preserves area, such as                                                             |  |  |  |  |
| -           | Lava Flow              | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Local Roads           | Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required.    |  |  |  |  |
| A.          |                        | Backgrou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | This product is generated from the USDA-NRCS certified dat                                                               |  |  |  |  |
| عليه        | Marsh or swamp         | and the second s | Aerial Photography    | of the version date(s) listed below.                                                                                     |  |  |  |  |
| R           | Mine or Quarry         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Soil Survey Area: Worcester County, Massachusetts, South                                                                 |  |  |  |  |
| 0           | Miscellaneous Water    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Part                                                                                                                     |  |  |  |  |
| 0           | Perennial Water        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Survey Area Data: Version 12, Sep 12, 2019                                                                               |  |  |  |  |
| $\vee$      | Rock Outcrop           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.                                          |  |  |  |  |
| +           | Saline Spot            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Date(s) aerial images were photographed: Jul 26, 2019–0                                                                  |  |  |  |  |
| °*°         | Sandy Spot             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 2019                                                                                                                     |  |  |  |  |
| -           | Severely Eroded Spot   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | The orthophoto or other base map on which the soil lines we                                                              |  |  |  |  |
| 0           | Sinkhole               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | compiled and digitized probably differs from the background                                                              |  |  |  |  |
| è           | Slide or Slip          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident.              |  |  |  |  |
| -           | Sodic Spot             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                          |  |  |  |  |
| Ŗ           | Sourc Spor             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                          |  |  |  |  |

USDA


Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 4/12/2020 Page 2 of 3


# Map Unit Legend

| Map Unit Symbol             | Map Unit Name                                                          | Acres in AOI | Percent of AOI |
|-----------------------------|------------------------------------------------------------------------|--------------|----------------|
| 1                           | Water                                                                  | 4.8          | 44.2%          |
| 305B                        | Paxton fine sandy loam, 3 to 8 0.0 percent slopes                      |              | 0.0%           |
| 305C                        | Paxton fine sandy loam, 8 to 15 percent slopes                         | 2.2          | 20.0%          |
| 307C                        | Paxton fine sandy loam, 8 to<br>15 percent slopes, extremely<br>stony  | 0.3          | 3.0%           |
| 307E                        | Paxton fine sandy loam, 15 to<br>35 percent slopes, extremely<br>stony | 1.9          | 17.8%          |
| 420B                        | Canton fine sandy loam, 3 to 8 percent slopes                          | 1.6          | 15.0%          |
| Totals for Area of Interest | ·                                                                      | 10.8         | 100.0%         |



Р





|                                  |                          |                                | TE                                      | ST BC                                    | RING L                                                                                                                | OG                             |                                        |              |                 |                         |                           |
|----------------------------------|--------------------------|--------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|--------------|-----------------|-------------------------|---------------------------|
|                                  |                          | 148<br>Lec                     | Pioneer                                 | MA 01453                                 |                                                                                                                       | raft<br>7 Main Str<br>1ry, MA. | reet                                   |              | BORIN<br>PROJEC |                         | . 20-02017                |
| 0.11                             | Dat                      | ate Star<br>e Finisł<br>Dril   | ted:<br>ned:<br>ller:                   | February 21, 20<br>February 21, 20<br>GG |                                                                                                                       | D DATE DEPT                    |                                        |              |                 | R OBSEF                 | RVATIONS<br>STABILIZATION |
| Soil Depth                       | Engineer.<br>Casing      | /Geolog                        | gist:                                   | Sample                                   |                                                                                                                       |                                |                                        |              | Visual Ide      | ntification             |                           |
| Ft.                              | bl/ft                    | No.                            | Pen/Rec                                 | Depth                                    | Blows/6"                                                                                                              | Strata                         |                                        | of           | Soil and / or   |                         | ple                       |
| 1                                |                          | 1                              | 8"                                      | 0'0" – 2'0"                              | 3-5-4-5                                                                                                               | 3'0"                           | Dry, brown<br>(Fill)                   | , loose, coa | rse to fine     | SAND.                   |                           |
| 5                                |                          | 2                              |                                         | 5'0" – 7'0"                              | 18-18-21-24                                                                                                           |                                | Dry, brown<br>gravel, som              |              | arse to fine    | e SAND, s               | ome coarse to fine        |
| 10                               |                          |                                |                                         |                                          |                                                                                                                       | 9'0"                           | End of Bori<br>No water er             |              | upon comj       | pletion.                |                           |
| 15                               |                          |                                |                                         |                                          |                                                                                                                       |                                |                                        |              |                 |                         |                           |
| 20                               |                          |                                |                                         |                                          |                                                                                                                       |                                |                                        |              |                 |                         |                           |
| 25                               |                          |                                |                                         |                                          |                                                                                                                       |                                |                                        |              |                 |                         |                           |
| 30                               |                          |                                |                                         |                                          |                                                                                                                       |                                |                                        |              |                 |                         |                           |
| 35                               |                          |                                |                                         |                                          |                                                                                                                       |                                |                                        |              |                 |                         |                           |
| Notor                            | Hollow                   | Storn A                        | ugor Siz                                | e 4.1/4"                                 |                                                                                                                       |                                |                                        |              |                 |                         |                           |
| Cohesion<br>10 -30 M<br>Cohesive | nless: 0 -<br>A Dense, 2 | 4 V. Lo<br>30 -50 D<br>Soft, 2 | 00se, 4 - 1<br>0ense, 504<br>-4 Soft, 4 | V Dense. Li<br>-8 M Stiff Sc             | ace         0 to 10%           ttle         10 to 20%           ome         20 to 35%           ad         35% to 50% | HAM                            | ZE (IN)<br>MER WGT (LE<br>MER FALL (IN | 3)           | SING            | SAMP<br>SS<br>140<br>30 | S<br>lb.                  |

|                      |                      | 148<br>Lec                   | 8 Pioneer             | MA 01453                                   | Steelcr:<br>Site: 115 W<br>Millbur | Main Str       | reet                                         |                |            | NG B-2<br>ECT NO | . 20-02                    | 017            |
|----------------------|----------------------|------------------------------|-----------------------|--------------------------------------------|------------------------------------|----------------|----------------------------------------------|----------------|------------|------------------|----------------------------|----------------|
| Soil E               |                      | ate Star<br>e Finisł<br>Dril | ted:<br>ned:<br>ller: | February 21, 202<br>February 21, 202<br>GG |                                    |                | DATE                                         | GROUN<br>DEPTH |            | ER OBSE<br>ASING | 1                          | NS<br>LIZATION |
| Depth                | Casing               |                              |                       | Sample                                     |                                    |                |                                              |                |            | dentification    |                            |                |
| Ft.<br>1             | bl/ft                | <u>No.</u>                   | Pen/Rec<br>8"         | Depth<br>0'0" – 2'0"                       | Blows/6"<br>5-4-5-5                | Strata<br>4'0" | Dry, brown<br>(Fill)                         |                | Soil and / | or Rock San      | nple                       |                |
| 5                    |                      | 2<br>3                       | 16"<br>3"             | 5'0" – 7'0"<br>10'0" – 11'4"               | 7-12-15-16<br>18-21-100/4"         | 12'0"          | Dry, brown<br>some coarse<br><br>End of Bori | e to fine g    | avel, som  | ne silt.         | coarse to                  | fine SAND,     |
| 15<br>20             |                      |                              |                       |                                            |                                    |                | No water er                                  | ncountered     | l upon con | mpletion.        |                            |                |
| 25                   |                      |                              |                       |                                            |                                    |                |                                              |                |            |                  |                            |                |
| 30                   |                      |                              |                       |                                            |                                    |                |                                              |                |            |                  |                            |                |
| 35                   |                      |                              |                       |                                            |                                    |                |                                              |                |            |                  |                            |                |
| Notes:               | Hollow               | Stem A                       | uger Siz              | e - 4 1/4"                                 |                                    |                |                                              |                |            |                  |                            |                |
| l0 -30 M<br>Cohesive | Dense, 3<br>: 0 -2 V | 30 -50 E<br>Soft, 2          |                       | V Dense. Little<br>-8 M Stiff Som          | e 10 to 20%<br>e 20 to 35%         | HAM            | ZE (IN)<br>MER WGT (LE<br>MER FALL (IN       | 3)             | ASING      | 140              | PLE (<br>SS<br>) lb.<br>0" | CORE TYPE      |

|                                  |                          |                                | TE                                      | ST BOI                                               | RING L                  | OG                         |                                        |                |       |                        |                           |
|----------------------------------|--------------------------|--------------------------------|-----------------------------------------|------------------------------------------------------|-------------------------|----------------------------|----------------------------------------|----------------|-------|------------------------|---------------------------|
|                                  |                          | 148<br>Leo                     | 8 Pioneer                               | MA 01453                                             |                         | aft<br>Main Stı<br>ry, MA. | ·eet                                   | -              |       | NG B-3<br>ECT NO       | . 20-02017                |
| Soil                             |                          | ate Star<br>e Finisl<br>Dri    | ted:<br>ned:<br>ller:                   | February 21, 202<br>February 21, 202<br>GG           |                         |                            | DATE                                   | GROUN<br>DEPTH |       | ER OBSE<br>ASING       | RVATIONS<br>STABILIZATION |
| Depth                            | Casing                   |                                |                                         | Sample                                               |                         |                            |                                        |                |       | dentification          |                           |
| Ft.                              | bl/ft                    | <u>No.</u>                     | Pen/Rec                                 | Depth<br>0'0" – 2'0"                                 | Blows/6"<br>1-1-3-4     | Strata<br>2'6"             | Dry, brown<br>(Fill)                   |                |       | or Rock Sam            |                           |
| 5<br>10                          |                          | 2<br>3                         | 17"<br>5"                               | 5'0" – 7'0"<br>10'0" – 10'10"                        | 17-18-18-18<br>12-70/4" |                            | Dry, brown<br>coarse to fin            |                |       |                        | ) fine SAND, trace        |
| 15                               |                          |                                |                                         |                                                      |                         | 12'0"                      | End of Bori                            |                |       |                        |                           |
| 20                               |                          |                                |                                         |                                                      |                         |                            |                                        |                |       |                        |                           |
| 25                               |                          |                                |                                         |                                                      |                         |                            |                                        |                |       |                        |                           |
| 30                               |                          |                                |                                         |                                                      |                         |                            |                                        |                |       |                        |                           |
| 35                               |                          |                                |                                         |                                                      |                         |                            |                                        |                |       |                        |                           |
| Notes:                           | Hollow                   | Stem A                         | uger Siz                                | e - 4 1/4"                                           |                         |                            |                                        |                |       |                        |                           |
| Cohesion<br>10 -30 M<br>Cohesive | nless: 0 -<br>A Dense, 2 | 4 V. Lo<br>30 -50 E<br>Soft, 2 | 00se, 4 - 1<br>Dense, 504<br>-4 Soft, 4 | 0 Loose, Trace<br>V Dense. Little<br>-8 M Stiff Some | e 10 to 20%             | HAM                        | ZE (IN)<br>MER WGT (LE<br>MER FALL (IN | 3)             | ASING | SAMP<br>S<br>140<br>30 | S<br>) lb.                |

|                                  |                          |                                | TE                                      | ST BO                                             | RING L                        | OG                             |                                        |                |                |                        |                       |       |
|----------------------------------|--------------------------|--------------------------------|-----------------------------------------|---------------------------------------------------|-------------------------------|--------------------------------|----------------------------------------|----------------|----------------|------------------------|-----------------------|-------|
|                                  |                          | 148<br>Leo                     | 8 Pioneer                               | MA 01453                                          |                               | raft<br>7 Main Str<br>1ry, MA. | eet                                    |                | BORIN<br>PROJE |                        | . 20-02017            |       |
| 0.11                             | Dat                      | ate Star<br>e Finisl<br>Dri    | ted:<br>ned:<br>ller:                   | February 21, 20<br>February 21, 20<br>GG          |                               |                                | DATE                                   | GROUN<br>DEPTH | 1              | R OBSEI<br>SING        | RVATIONS<br>STABILIZA | ATION |
| Depth                            | Engineer,<br>Casing      | /Geolog                        | gist:                                   | Sample                                            |                               |                                |                                        |                | Visual Id      | entification           |                       |       |
| Ft.                              | bl/ft                    | No.                            | Pen/Rec                                 | Depth                                             | Blows/6"                      | Strata                         |                                        | of             |                | or Rock San            | ple                   |       |
| 1                                |                          | 1                              | 8"                                      | 0'0" – 2'0"                                       | 3-2-2-5                       | 2'6"                           | Dry, brown<br>(Fill)                   | , loose, sor   | ne mediur      | n to fine s            | and.                  |       |
| 5                                |                          | 2                              | 17"                                     | 5'0" – 7'0"                                       | 8-9-10-11                     |                                | Dry, brown                             | , medium c     | lense, me      | dium to fin            | e SAND, some          | silt. |
| 10                               |                          |                                |                                         |                                                   |                               | 8'0"                           | End of Bori<br>No water er             |                | upon con       | pletion.               |                       |       |
| 15                               |                          |                                |                                         |                                                   |                               |                                |                                        |                |                |                        |                       |       |
| 20                               |                          |                                |                                         |                                                   |                               |                                |                                        |                |                |                        |                       |       |
| 25                               |                          |                                |                                         |                                                   |                               |                                |                                        |                |                |                        |                       |       |
| 30                               |                          |                                |                                         |                                                   |                               |                                |                                        |                |                |                        |                       |       |
| 35                               |                          |                                |                                         |                                                   |                               |                                |                                        |                |                |                        |                       |       |
| Notes:                           | Hollow                   | Stem A                         | uger Siz                                | e - 4 1/4"                                        | 1                             | <u> </u>                       | 1                                      |                |                |                        |                       |       |
| Cohesion<br>10 -30 M<br>Cohesive | nless: 0 -<br>A Dense, 3 | 4 V. Lo<br>30 -50 E<br>Soft, 2 | 00se, 4 - 1<br>Dense, 504<br>-4 Soft, 4 | 0 Loose, Tra<br>+ V Dense. Lit<br>- 8 M Stiff Sor | tle 10 to 20%<br>me 20 to 35% | HAM                            | ZE (IN)<br>MER WGT (LE<br>MER FALL (IN | 3)             | ASING          | SAMP<br>S<br>140<br>30 | S<br>lb.              | ТҮРЕ  |

# **APPENDIX 11**

# **MADEP Stormwater Checklist**



## Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

## A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.



A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.<sup>1</sup> This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8<sup>2</sup>
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

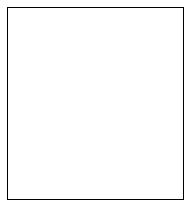
<sup>&</sup>lt;sup>1</sup> The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

<sup>&</sup>lt;sup>2</sup> For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.



## **B. Stormwater Checklist and Certification**

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

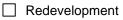

*Note:* Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

## **Registered Professional Engineer's Certification**

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature




Signature and Date

## Checklist

**Project Type:** Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development



Mix of New Development and Redevelopment



**LID Measures:** Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

| $\boxtimes$ | No disturbance to any Wetland Resource Areas                                  |
|-------------|-------------------------------------------------------------------------------|
|             | Site Design Practices (e.g. clustered development, reduced frontage setbacks) |
|             | Reduced Impervious Area (Redevelopment Only)                                  |
|             | Minimizing disturbance to existing trees and shrubs                           |
|             | LID Site Design Credit Requested:                                             |
|             | Credit 1                                                                      |
|             | Credit 2                                                                      |
|             | Credit 3                                                                      |
|             | Use of "country drainage" versus curb and gutter conveyance and pipe          |
|             | Bioretention Cells (includes Rain Gardens)                                    |
|             | Constructed Stormwater Wetlands (includes Gravel Wetlands designs)            |
|             | Treebox Filter                                                                |
|             | Water Quality Swale                                                           |
|             | Grass Channel                                                                 |
|             | Green Roof                                                                    |
|             | Other (describe):                                                             |
|             |                                                                               |

#### **Standard 1: No New Untreated Discharges**

- No new untreated discharges
- $\boxtimes$  Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.



#### Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

#### Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

| $\boxtimes$ | Static |
|-------------|--------|
|-------------|--------|

Dynamic Field<sup>1</sup>

 $\boxtimes$  Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

| 🗌 F | Recharge BMPs | have been | sized to i | infiltrate the | e Required | Recharge | Volume. |
|-----|---------------|-----------|------------|----------------|------------|----------|---------|
|-----|---------------|-----------|------------|----------------|------------|----------|---------|

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
  - Site is comprised solely of C and D soils and/or bedrock at the land surface
  - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
  - Solid Waste Landfill pursuant to 310 CMR 19.000
  - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- $\boxtimes$  Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

<sup>&</sup>lt;sup>1</sup> 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.



#### Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

#### **Standard 4: Water Quality**

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
  - is within the Zone II or Interim Wellhead Protection Area
  - is near or to other critical areas
  - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
  - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.



| Checklist (continued)                 |  |
|---------------------------------------|--|
| Standard 4: Water Quality (continued) |  |

| The BMP | is sized | (and c | alculations  | provided | ) based | on: |
|---------|----------|--------|--------------|----------|---------|-----|
|         | 10 01200 | (unu u | aloulationio | providou | , 54004 | 0   |

- The <sup>1</sup>/<sub>2</sub>" or 1" Water Quality Volume or
- The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

#### Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

#### **Standard 6: Critical Areas**

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.



# Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
  - Limited Project
  - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
  - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
  - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
  - Bike Path and/or Foot Path
  - Redevelopment Project
  - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

#### Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.



# **Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control** (continued)

| The project is highly complex and information is included in the Stormwater Report that explains why |
|------------------------------------------------------------------------------------------------------|
| it is not possible to submit the Construction Period Pollution Prevention and Erosion and            |
| Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and      |
| Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be  |
| submitted <i>before</i> land disturbance begins.                                                     |

- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

#### **Standard 9: Operation and Maintenance Plan**

| The Post Construction Operation and Maintenance Plan is included in the Stormwater Repo | rt and |
|-----------------------------------------------------------------------------------------|--------|
| includes the following information:                                                     |        |

- Name of the stormwater management system owners;
- Party responsible for operation and maintenance;
- Schedule for implementation of routine and non-routine maintenance tasks;
- Plan showing the location of all stormwater BMPs maintenance access areas;
- Description and delineation of public safety features;
- Estimated operation and maintenance budget; and
- Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
  - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
  - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

#### Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.